Skip to main content

Do We Need Internal Models for Movement Control?

  • Chapter
Nonlinear Dynamics in Human Behavior

Part of the book series: Studies in Computational Intelligence ((SCI,volume 328))

Abstract

The issue of how humans and animals perform accurate movements has been addressed in various ways. Although this book is promoting concepts stemming from dynamical systems theory, other approaches have contributed to the understanding of movement as well. Among others, the equilibrium point theory and the computational theory deserve to be listed for their contribution to this field of research called motor control. In this chapter, using single-joint rhythmic movement as an example, I will start first emphasizing the respective contributions and drawbacks of each approach. Then I will address the issue of parameter selection. Indeed, despite diverging opinions about the possible nature of control parameter(s), all three approaches must deal with the problem of how adequate parameter(s) to achieve a desired movement are selected. At the end of this chapter, I will expose how the concept of internal model may offer a solution to this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abend, W., Bizzi, E., Morasso, P.: Human arm trajectory formation. Brain 105(2), 331–348 (1982)

    Article  Google Scholar 

  • Almeida, G.L., Hong, D.A., Corcos, D., Gottlieb, G.L.: Organizing principles for voluntary movement: extending single-joint rules. Journal of Neurophysiology 74, 1374–1381 (1995)

    Google Scholar 

  • Ashe, J.: Force and the motor cortex. Behavioural Brain Research 87, 255–269 (1997)

    Article  Google Scholar 

  • Beek, P.J., Rikkert, W.E.I., van Wieringen, P.C.W.: Limit cycle properties of rhythmic forearm movements. Journal of Experimental Psychology: Human Perception & Performance 22, 1077–1093 (1996)

    Article  Google Scholar 

  • Bennett, D.J., Hollerbach, J.M., Xu, Y., Hunter, I.W.: Time-varying stiffness of human elbow joint during cyclic voluntary movement. Experimental Brain Research 88, 433–442 (1992)

    Article  Google Scholar 

  • Bernstein, N.A.: The co-ordination and regulation of movements. Pergamon Press, Oxford (1967)

    Google Scholar 

  • Conditt, M.A., Gandolfo, F., Mussa-Ivaldi, F.A.: The motor system does not learn the dynamics of the arm by rote memorization of past experience. Journal of Neurophysiology 78, 554–560 (1997)

    Google Scholar 

  • Dai, T.H., Liu, J.Z., Sahgal, V., Brown, R.W., Yue, G.H.: Relationship between muscle output and functional MRI-measured brain activation. Experimental Brain Research 140, 290–300 (2001)

    Article  Google Scholar 

  • Feldman, A.G.: Superposition of motor programs. I. Rhythmic forearm movements in man. Neuroscience 5, 81–90 (1980)

    Article  Google Scholar 

  • Feldman, A.G.: Once more on the equilibrium-point hypothesis (lambda model) for motor control. Journal of Motor Behavior 18, 17–54 (1986)

    Google Scholar 

  • Feldman, A.G., Levin, M.F.: The origin and use of positional frames of reference in motor control. Behavioural and Brain Sciences 18, 723–806 (1995)

    Article  Google Scholar 

  • Flanagan, J.R., Tresilian, J.R., Wing, A.M.: Grip force adjustments during rapid hand movements suggest that detailed movement kinematics are predicted. Behavioural and Brain Sciences 18, 753–754 (1995)

    Article  Google Scholar 

  • Franklin, D.W., Osu, R., Burdet, E., Kawato, M., Milner, T.E.: Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model. Journal of Neurophysiology 90, 3270–3282 (2003)

    Article  Google Scholar 

  • Georgopoulos, A.P., Ashe, J., Smyrnis, N., Taira, M.: The motor cortex and the coding of force. Science 256, 1692–1695 (1992)

    Article  Google Scholar 

  • Gottlieb, G.L., Corcos, D.M., Agarwal, G.C.: Organizing principles for single-joint movements. I. A speed-insensitive strategy. Journal of Neurophysiology 62, 342–357 (1989)

    Google Scholar 

  • Gottlieb, G.L.: Shifting frames but the same old point of view. Behavioural and Brain Sciences 18, 758 (1995)

    Article  Google Scholar 

  • Gottlieb, G.L.: Rejecting the equilibrium-point hypothesis. Motor Control 2, 10–12 (1998a)

    Google Scholar 

  • Gottlieb, G.L.: Muscle activation patterns during two types of voluntary single-joint movement. Journal of Neurophysiology 80, 1860–1867 (1998b)

    Google Scholar 

  • Gottlieb, G.L., Agarwal, G.C.: Dynamic relationship between isometric muscle tension and the electromyogram in man. Journal of Applied Physiology 30, 345–351 (1971)

    Google Scholar 

  • Gribble, P.L., Ostry, D.J., Sanguineti, V., Laboissiere, R.: Are complex control signals required for human arm movements? Journal of Neurophysiology 79, 1409–1424 (1998)

    Google Scholar 

  • Gribble, P.L., Ostry, D.J.: Compensation for loads during arm movements using equilibrium-point control. Experimental Brain Research 135, 474–482 (2000)

    Article  Google Scholar 

  • Gribble, P.L., Mullin, L.I., Cothros, N., Mattar, A.: Role of cocontraction in arm movement accuracy. Journal of Neurophysiology 89, 2396–2405 (2003)

    Article  Google Scholar 

  • Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London B 126, 136–195 (1938)

    Article  Google Scholar 

  • Humphrey, D.R., Reed, D.J.: Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles. Advances in Neurology 39, 347–372 (1983)

    Google Scholar 

  • Kawato, M.: Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9, 718–727 (1999)

    Article  Google Scholar 

  • Jang, J., Hsiao, K.T., Hsiao-Wecksler, E.T.: Balance (perceived and actual) and preferred stance width during pregnancy. Clinical Biomechanics 23, 468–476 (2008)

    Article  Google Scholar 

  • Kay, B.A., Kelso, J.A., Saltzman, E.L., Schöner, G.: Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. Journal of Experimental Psychology: Human Perception & Performance 13, 178–192 (1987)

    Article  Google Scholar 

  • Latash, M.L.: Virtual trajectories, joint stiffness, and changes in the limb natural frequency during single-joint oscillatory movements. Neuroscience 49, 209–220 (1992)

    Article  Google Scholar 

  • Latash, M.L.: Control of Human movement. Human Kinetics (1993)

    Google Scholar 

  • Latash, M.L., Zatsiorsky, V.M.: Joint stiffness: Myth or reality. Human Movement Science 12, 653–692 (1993)

    Article  Google Scholar 

  • Latash, M.L., Danion, F., Bonnard, M.: Effects of transcranial magnetic stimulation on muscle activation patterns and joint kinematics within a two-joint motor synergy. Brain Research 961, 229–242 (2003)

    Article  Google Scholar 

  • Lippold, O.C.J.: The relation between integrated action potential in human muscle and its isometric tension. Journal of Physiology (London) 117, 492–499 (1952)

    Google Scholar 

  • Malfait, N., Shiller, D.M., Ostry, D.J.: Transfer of motor learning across arm configurations. Journal of Neuroscience 22, 9656–9660 (2002)

    Google Scholar 

  • Malfait, N., Gribble, P.L., Ostry, D.J.: Generalization of motor learning based on multiple field exposures and local adaptation. Journal of Neurophysiology 93, 3327–3338 (2005)

    Article  Google Scholar 

  • Malfait, N., Ostry, D.J.: Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? Journal of Neuroscience 24, 8084–8089 (2004)

    Article  Google Scholar 

  • Morasso, P.: Spatial control of arm movements. Experimental Brain Research 42, 223–227 (1981)

    Article  Google Scholar 

  • Morton, S.M., Lang, C.E., Bastian, A.J.: Inter- and intra-limb generalization of adaptation during catching. Experimental Brain Research 141, 438–445 (2001)

    Article  Google Scholar 

  • Mottet, D., Bootsma, R.J.: The dynamics of goal-directed rhythmical aiming. Biological Cybernetics 80, 235–245 (1999)

    Article  Google Scholar 

  • Newell, K.M., Liu, Y.T., Mayer-Kress, G.: Time scales in motor learning and development. Psychological Review 108, 57–82 (2001)

    Article  Google Scholar 

  • Nozaki, D., Kurtzer, I., Scott, S.H.: Limited transfer of learning between unimanual and bimanual skills within the same limb. Nature Neuroscience 9, 1364–1366 (2006)

    Article  Google Scholar 

  • Olney, S.J., Winter, D.A.: Prediction of knee and ankle moments of force in walking from EMG and kinematic data. Journal of Biomechanics 18, 9–20 (1985)

    Article  Google Scholar 

  • Ostry, D.J., Feldman, A.G.: A critical evaluation of the force control hypothesis in motor control. Experimental Brain Research 153, 275–288 (2003)

    Article  Google Scholar 

  • Pigeon, P., Yahia, L., Feldman, A.: Moment arms and lengths of human upper limb muscles as functions of joint angles. Journal of Biomechanics 29, 1365–1370 (1996)

    Article  Google Scholar 

  • Rosenbaum, D.A.: Is Dynamical systems modelling just curve fitting? Motor Control 2, 101–104 (1998)

    Google Scholar 

  • Sarlegna, F., Blouin, J., Vercher, J.L., Bresciani, J.P., Bourdin, C., Gauthier, G.M.: Online control of the direction of rapid reaching movements. Experimental Brain Research 157, 468–471 (2004)

    Article  Google Scholar 

  • Shadmehr, R.: Generalization as a behavioral window to the neural mechanisms of learning internal models. Human Movement Science 23, 543–568 (2004)

    Article  Google Scholar 

  • Shadmehr, R., Mussa-Ivaldi, F.A.: Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience 14, 3208–3224 (1994)

    Google Scholar 

  • Shadmehr, R., Brashers-Krug, T.: Functional stages in the formation of human long-term motor memory. Journal of Neuroscience 17, 409–419 (1997)

    Google Scholar 

  • Sainburg, R.L., Ghez, C., Kalakanis, D.: Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. Journal of Neurophysiology 81, 1045–1056 (1999)

    Google Scholar 

  • Solomonow, M., Baratta, R., Zhou, B.H., Shoji, H., D’Ambrosia, R.: Historical update and new developments on the EMG-force relationships of skeletal muscles. Orthopaedics 9, 1541–1543 (1986)

    Google Scholar 

  • Thelen, D.G., Schultz, A.B., Fassois, S.D., Ashton-Miller, J.A.: Identification of dynamic myoelectric signal-to-force models during isometric lumbar muscle contractions. Journal of Biomechanics 27, 907–919 (1994)

    Article  Google Scholar 

  • Wagener, D.S., Colebatch, J.G.: Voluntary rhythmical movement is reset by stimulating the motor cortex. Experimental Brain Research 111, 113–120 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Danion, F. (2010). Do We Need Internal Models for Movement Control?. In: Huys, R., Jirsa, V.K. (eds) Nonlinear Dynamics in Human Behavior. Studies in Computational Intelligence, vol 328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16262-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16262-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16261-9

  • Online ISBN: 978-3-642-16262-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics