Advertisement

Devon Island as a Proving Ground for Planetary Rovers

  • Timothy D. Barfoot
  • Paul T. Furgale
  • Braden E. Stenning
  • Patrick J. F. Carle
  • John P. Enright
  • Pascal Lee
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 83)

Abstract

The future of space exploration will be increasingly surface-based and extended-duration. Planetary rovers, both manned and autonomous, will play vital roles in transporting instruments, astronauts, and equipment across rugged and unfamiliar surfaces. To enable this vision, it is advisable to deploy prototype rover vehicles in analog environments on Earth, in order to learn how best to use these tools. Devon Island, in the Canadian High Arctic, has been used as a proving ground for planetary rovers, due to its vast scale, variety of topography/geology, challenging lighting, lack of vegetation, existing infrastructure at the well-established Haughton- Mars Project Research Station, and wealth of interesting scientific mission objectives. In this paper we review the suitability of using Devon Island for the continued testing of planetary rovers; several examples of previously conducted tests are provided. We conclude that despite the typical logistical challenges associated with remote field work, Devon Island should be considered a strong candidate for ongoing rover field deployments.

Keywords

Stereo Camera Vision Algorithm Prove Ground Visual Odometry Mars Exploration Rover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ASI, BNSC, CNES, CNSA, CSA, CSIRO, DLR, ESA, ISRO, JAXA, KARI, NASA, NSAU, and Roscosmos, The Global Exploration Strategy: The Framework for Coordination, Technical report (2007)Google Scholar
  2. 2.
    Barfoot, T.D., Furgale, P.T., Osinski, G.R., Ghafoor, N., Williams, K.: Field Testing of Robotic Technologies to Support Ground-Ice Prospecting in Martian Polygonal Terrain. Planetary and Space Science, special issue on Exploring other worlds by exploring our own: The role of terrestrial analogue studies in planetary exploration 58(4), 671–681 (2010)Google Scholar
  3. 3.
    Carle, P., Furgale, P.T., Barfoot, T.D.: Long-Range Rover Localization by Matching Lidar Scans to Orbital Elevation Maps. Journal of Field Robotics 27(3), 344–370 (2010)Google Scholar
  4. 4.
    Enright, J., Furgale, P., Barfoot, T.D.: Sun Sensing for Planetary Rover Navigation. In: Proc. of the IEEE Aerospace Conference, Big Sky, MT (2009)Google Scholar
  5. 5.
    Furgale, P.T., Barfoot, T.D.: Visual Teach and Repeat for Long-Range Rover Autonomy. Journal of Field Robotics, special issue on Visual mapping and navigation outdoors (2010)Google Scholar
  6. 6.
    Fong, T., Deans, M., Bualat, M., Flueckiger, L., Allan, M., Utz, H., Lee, S., To, V., Lee, P.: Analog Lunar Robotic Site Survey at Haughton Crater. In: Proc. of the Workshop on Enabling Exploration: The Lunar Outpost and Beyond, Abs. 3058, Lunar Exploration Analysis Group, Houston, TX (2007)Google Scholar
  7. 7.
    Fong, T., Allan, M., Bouyssounouse, X., Bualat, M., Deans, M., Edwards, L., Fluckiger, L., Keely, L., Lee, S., Lees, D., To, V., Utz, H.: Robotics Site Survey at Haughton Crater. In: Proc. of the 9th Int. Symp. on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Los Angeles, CA (2008)Google Scholar
  8. 8.
    Lee, P., Bunch, T.E., Cabrol, N., Cockell, C.S., Grieve, R.A.F., Rice, J.W., Mckay, C. P., Chutt, J.W., Zent, A.P.: Haughton-Mars 97 - I: Overview of Observations at the Haughton Impact Crater, a Unique Mars Analog Site in the Canadian High Arctic. In: Proceedings of the 29th Lunar and Planetary Science Conference, Houston, Texas, pp. 1973–1974 (1998)Google Scholar
  9. 9.
    Lee, P., Braham, S., Boucher, M., Schutt, J., Glass, B., Gross, A., Hine, B., McKay, C., Hoffman, S., Jones, J., Berinstain, A., Comptois, J.-M., Hodgson, E., Wilkinson, N.: Haughton-Mars Project: 10 Years of Science Operations and Exploration Systems Development at a Moon/Mars Analog Site on Devon Island, High Arctic. In: Proceedings of the 38th Lunar and Planetary Science Conference, League City, Texas, pp. 2426–2427 (2007)Google Scholar
  10. 10.
    Matthews, J.: Development of the Tumbleweed Rover, Technical report, Jet Propulsion Laboratory (2003)Google Scholar
  11. 11.
    Schenker, P.S., Huntsberger, T.L., Pirjanian, P., Baumgartner, E.T., Tunstel, E.: Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human-Robotic Colonization. Autonomous Robots 14(2), 103–126 (2003), doi:10.1023/A:1022271301244MATHCrossRefGoogle Scholar
  12. 12.
    Wettergreen, D., Dias, M., Shamah, B., Teza, J., Tompkins, P., Urmson, C., Wagner, M., Whittaker, W.: First Experiment in Sun-Synchronous Exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Washington, DC, pp. 3501–3507 (2002)Google Scholar
  13. 13.
    Wettergreen, D., Thompkins, P., Urmson, C., Wagner, M., Whittaker, W.: Sun-Synchronous Robotic Exploration: Technical Description and Field Experimentation. International Journal of Robotics Research 24(1), 3–30 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Timothy D. Barfoot
    • 1
  • Paul T. Furgale
    • 1
  • Braden E. Stenning
    • 1
  • Patrick J. F. Carle
    • 1
  • John P. Enright
    • 2
  • Pascal Lee
    • 3
  1. 1.University of Toronto Institute for Aerospace StudiesTorontoCanada
  2. 2.Ryerson UniversityTorontoCanada
  3. 3.Mars InstituteVancouverCanada

Personalised recommendations