Human Safety Algorithms for a Parallel Cable-Driven Haptic Interface

  • Martin J. -D. Otis
  • Sylvain Comtois
  • Denis Laurendeau
  • Clément Gosselin
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 83)


A parallel cable-driven haptic interface is designed to allow interaction with any type of virtual object. This paper presents and analyzes computational methods for addressing the issues regarding human safety and control reliability using such an interface, thereby ensuring safe operations inside the virtual world. Four strategies are explored: sensor reliability, mechanical interference management, workspace management and human-robot interaction. This paper focuses mainly on the sensors’ reliability and workspace management algorithms for a parallel cable-driven haptic interface that imposes special requirements on the control architecture design. One challenging task is to develop efficient computational algorithms for hard real-time processes included in haptic display applications which improve safety without compromising performance.


Haptic Device Cable Length Cable Tension Trajectory Time Sensor Reliability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrette, G., Gosselin, C.: Determination of the dynamic workspace of cable-driven planar parallel mechanisms. Journal of Mechanical Design 127(2), 242–248 (2005)CrossRefGoogle Scholar
  2. 2.
    Gouttefarde, M., Gosselin, C.M.: Wrench-closure workspace of six-dof parallel mechanisms driven by 7 cables. Transactions of the Canadian Society for Mechanical Engineering 29(4), 541–552 (2005)Google Scholar
  3. 3.
    Haddadin, S., Albu-Schaffer, A., De Luca, A., Hirzinger, G.: Collision detection and reaction: A contribution to safe physical human-robot interaction. In: International Conference on Intelligent Robots and Systems, pp. 3356–3363. IEEE/RSJ, Nice, France (2008)Google Scholar
  4. 4.
    Hannaford, B., Ryu, J.H.: Time-domain passivity control of haptic interfaces. Transactions on Robotics and Automation 18(1), 1–10 (2002)CrossRefGoogle Scholar
  5. 5.
    Iwata, H., Yano, H., Fukushima, H., Noma, H.: Circulafloor. Computer Graphics and Applications 25(1), 64–67 (2005)CrossRefGoogle Scholar
  6. 6.
    Lafourcade, P.: Étude des manipulateurs parallèles à câbles, conception d’une suspension active pour soufflerie. École Nationale Supérieur de l’ Aéronautique et de l’Espace (2004)Google Scholar
  7. 7.
    Lahouar, S., Ottaviano, E., Zeghoul, S., Romdhane, L., Ceccarelli, M.: Collision free path-planning for cable-driven parallel robots. Robotics and Autonomous Systems 57(11), 1083–1093 (2009)CrossRefGoogle Scholar
  8. 8.
    Otis, M.J.D., Mokhtari, M., Du Tremblay, C., Laurendeau, D., De Rainville, F.M., Gosselin, C.M.: Hybrid control with multi-contact interactions for 6dof haptic foot platform on a cable-driven locomotion interface. In: Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems, pp. 161–168. IEEE, Piscataway (2008)CrossRefGoogle Scholar
  9. 9.
    Otis, M.J.D., Nguyen-Dang, T.L., Laliberté, T., Ouellet, D., Laurendeau, D., Gosselin, C.: Cable tension control and analysis of reel transparency for 6-dof haptic foot platform on a cable-driven locomotion interface. International Journal of Electrical, Computer, and Systems Engineering 3(1), 16–29 (2009)Google Scholar
  10. 10.
    Otis, M.J.D., Perreault, S., Nguyen-Dang, T.L., Lambert, P., Gouttefarde, M., Laurendeau, D., Gosselin, C.: Determination and management of cable interferences between two 6-dof foot platforms in a cable-driven locomotion interface. Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39(3), 528–544 (2009)CrossRefGoogle Scholar
  11. 11.
    Pace, C., Seward, D.W.: A model for autonomous safety management in a mobile robot. In: International Conference on Computational Intelligence for Modelling, Control and Automation, vol. 1, pp. 1128–1133. IEEE, Vienna (2005)Google Scholar
  12. 12.
    Park, J., Yoon, J., Lim, Y.A., Ryu, J.: A smooth planar walking algorithm for virtual walking machine (k-walker). In: SICE-ICASE International Conference, Piscataway, NJ, USA, pp. 4786–4791 (2006)Google Scholar
  13. 13.
    Perreault, S., Gosselin, C.: Cable-driven parallel mechanisms: application to a locomotion interface. Journal of Mechanical Design, Transactions 130(10), 102, 301–308 (2008)Google Scholar
  14. 14.
    Perreault, S., et al.: Analysis of the interference-free constant-orientation workspace of parallel cable-driven manipulators. Journal of Mechanical Design, Transactions 130(10), 102, 301–308 (2010)Google Scholar
  15. 15.
    Roberts, R.G., Graham, T., Lippitt, T.: On the inverse kinematics, statics, and fault tolerance of cable-suspended robots. Journal of Robotic Systems 15(10), 581–597 (1998)zbMATHCrossRefGoogle Scholar
  16. 16.
    Ryu, J.H., Kim, Y.S., Hannaford, B.: Sampled- and continuous-time passivity and stability of virtual environments. Transactions on Robotics 20(4), 772–776 (2004)CrossRefGoogle Scholar
  17. 17.
    Schmidt, H., Hesse, S., Bernhardt, R.: Safety concept for robotic gait trainers. In: International Conference on Engineering in Medicine and Biology, San Francisco, CA, United States, vol. 261, pp. 2703–2706 (2004)Google Scholar
  18. 18.
    Tan, J.T.C., Duan, F., Zhang, Y., Kato, R., Arai, T.: Safety design and development of human-robot collaboration in cellular manufacturing. In: Automation Science and Engineering, pp. 537–542. IEEE, Bangalore (2009)Google Scholar
  19. 19.
    Wischnitzer, Y., Shvalb, N., Shoham, M.: Wire-driven parallel robot: Permitting collisions between wires. International Journal of Robotics Research 27(9), 1007–1026 (2008)CrossRefGoogle Scholar
  20. 20.
    Yoon, J., Park, J., Ryu, J.: A symmetric walking cancellation algorithm of a foot-platform locomotion interface. In: International Conference on Humanoid Robots, pp. 668–673. IEEE-RAS, Piscataway (2008)Google Scholar
  21. 21.
    Zheng, Y., Liu, X.: Optimal tension distribution of wire-driven parallel manipulators. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering 41(9), 140–145 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin J. -D. Otis
    • 1
  • Sylvain Comtois
    • 1
  • Denis Laurendeau
    • 1
  • Clément Gosselin
    • 2
  1. 1.Computer Vision and Systems LaboratoryUniversity Laval
  2. 2.Robotics LaboratoryUniversity Laval

Personalised recommendations