A Heuristic Algorithm for Slicing in the Rapid Freeze Prototyping of Sculptured Bodies

  • Eric Barnett
  • Jorge Angeles
  • Damiano Pasini
  • Pieter Sijpkes
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 83)


The subject of this paper is a heuristic slicing algorithm for converting STL or PLY CAD data into boundary and fill paths for rapid freeze prototyping (RFP). The algorithm, developed for one commercial robotic system, can also be used to produce toolpaths for other rapid prototyping systems. The algorithm entails five steps: (a) geometry data and other control parameters are imported; (b) the geometry is sliced at several equidistant heights to form bounding paths; (c) contours for the scaffolding material are computed; (d) part and scaffolding paths are buffered in or out to account for deposition path width; and (e) fill paths are computed. A STL file of a 300 mm-high statue of James McGill is used as an example part for demonstrating the capabilities of the algorithm.


Rapid Prototype Triangular Facet ASCII Format Merge Region Internal Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crawford, R.H., Beaman, J.J.: IEEE Spectr. 36(2), 34 (1999)CrossRefGoogle Scholar
  2. 2.
    Bryant, F.D., Leu, M.C.: Rapid Prototyp. J. 55(1), 317 (2009)CrossRefGoogle Scholar
  3. 3.
    Bryant, F.D., Sui, G., Leu, M.C.: Rapid Prototyp. J. 9(1), 19 (2003)CrossRefGoogle Scholar
  4. 4.
    Zhang, W., Leu, M.C., Yi, Z., Yan, Y.: IEEE Spectr. 20, 139 (1999)Google Scholar
  5. 5.
    Sijpkes, P., Barnett, E., Angeles, J., Pasini, D.: Archit. Res. Cent. Consort Spring Conf. (ARCC 2009), San Antonio, TX, April 15-18, pages 6 (2009)Google Scholar
  6. 6.
    Barnett, E., Angeles, J., Pasini, D., Sijpkes, P.: IEEE Int. Conf. Robot. Autom., Kobe, JP, May 12-17, pp. 146–151 (2009)Google Scholar
  7. 7.
    Barnett, E., Angeles, J., Pasini, D., Sijpkes, P.: To appear in Proc. ASME 2010 Int. Des. Eng. Tech. Conf., (Montreal, QC, Canada, August 15-18 (2010)Google Scholar
  8. 8.
    Ossino, A., Barnett, E., Angeles, J., Pasini, D., Sijpkes, P.: Trans. Can. Soc. Mech. Eng. 33(4), 689 (2009)Google Scholar
  9. 9.
    Allen, S., Dutta, D., Des, J.: Manuf. 5(3), 153 (1995)Google Scholar
  10. 10.
    Choi, S.H., Kwok, K.T.: Rapid Prototyp. J. 8(3), 161 (2002)CrossRefGoogle Scholar
  11. 11.
    Haipeng, P., Tianrui, Z.: Rapid Prototyp. J. 187–188, 623 (2007)Google Scholar
  12. 12.
    Luo, R.C., Pan, Y.L., Wang, C.J., Huang, Z.H.: IEEE Int. Conf. Robot. Autom., Orlando, FL, May 15-19, pp. 883–888 (2006)Google Scholar
  13. 13.
    Angeles, J.: Rotational Kinematics. Springer, New York (1988)Google Scholar
  14. 14.
    Chalasani, K., Jones, L., Roscoe, L.: Solid Freeform Fabr. Symp., Austin, TX, August 7–9, pp. 229-241 (1995)Google Scholar
  15. 15.
    Huang, X., Ye, C., Wu, S., Guo, K., Mo, J.: Int. J. Adv. Manuf. Tech. 42, 1074 (2008)CrossRefGoogle Scholar
  16. 16.
    Chen, H., Xi, N., Sheng, W., Chen, Y., Roche, A., Dahl, J.: IEEE Int. Conf. Robot. Autom, Taipei, Taiwan, September 14–19, pp. 3504–3509 (2003)Google Scholar
  17. 17.
    Luo, R.C., Chang, C.L., Tzou, J.H., Huang, Z.H.: IEEE Int. Conf. Robot. Autom., Barcelona, Spain, April 18-22, pp. 584–589 (2005)Google Scholar
  18. 18.
    Xu, A., Shaw, L.L.: Comput. Aided Des. 37, 1308 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eric Barnett
    • 1
  • Jorge Angeles
    • 1
  • Damiano Pasini
    • 2
  • Pieter Sijpkes
    • 3
  1. 1.Centre for Intelligent Machines and Department of Mechanical EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of Mechanical EngineeringMcGill UniversityMontrealCanada
  3. 3.School of ArchitectureMcGill UniversityMontrealCanada

Personalised recommendations