Advertisement

Medial Spheres for Shape Approximation

  • Svetlana Stolpner
  • Paul Kry
  • Kaleem Siddiqi
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 83)

Abstract

We study the problem of approximating a solid with a union of overlapping spheres. We introduce a method based on medial spheres which, when compared to a state-of-the-art approach, offers more than an order of magnitude speed-up and achieves a tighter volumetric approximation of the original mesh, while using fewer spheres. The spheres generated by our method are internal to the object, which permits an exact error analysis and comparison with other sphere approximations. We demonstrate that a tight bounding volume hierarchy of our set of spheres may be constructed using rectangle-swept spheres as bounding volumes. Further, once our spheres are dilated, we show that this hierarchy generally offers superior performance in approximate separation distance tests.

Keywords

Voronoi Diagram Object Boundary Medial Surface Medial Axis Voronoi Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ranjan, V., Fournier, A.: Volume models for volumetric data. Computer 27(7), 28–36 (1994)CrossRefGoogle Scholar
  2. 2.
    Bradshaw, G., O’Sullivan, C.: Adaptive medial-axis approximation for sphere-tree construction. ACM Transactions on Graphics 23(1), 1–26 (2004)CrossRefGoogle Scholar
  3. 3.
    Wang, R., Zhou, K., Snyder, J., Liu, X., Bao, H., Peng, Q., Guo, B.: Variational sphere set approximation for solid objects. Visual Computer 22(9), 612–621 (2006)CrossRefGoogle Scholar
  4. 4.
    Rusinkiewicz, S., Levoy, M.: QSplat: A multiresolution point rendering system for large meshes. In: ACM SIGGRAPH, pp. 343–352 (2000)Google Scholar
  5. 5.
    Shamir, A., Sotzio, A., Cohen-Or, D.: Enhanced hierarchical shape matching for shape transformation. International Journal for Shape Modeling 9(2), 203–222 (2003)MATHCrossRefGoogle Scholar
  6. 6.
    Yoshizawa, S., Belyaev, A., Seidel, H.P.: Skeleton-based variational mesh deformations. Computer Graphics Forum 26(3), 255–264 (2007)CrossRefGoogle Scholar
  7. 7.
    Aichholzer, O., Aurenhammer, F., Kornberger, B., Plantinga, S., Rote, G., Sturm, A., Vegter, G.: Recovering structure from r-sampled objects. Computer Graphics Forum 28(5), 1349–1360 (2009)CrossRefGoogle Scholar
  8. 8.
    Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection. ACM Transactions on Graphics 15(3), 179–210 (1996)CrossRefGoogle Scholar
  9. 9.
    Stolpner, S., Whitesides, S., Siddiqi, K.: Sampled medial loci and boundary differential geometry. In: ICCV Workshop on 3-D Digital Imaging and Modeling, pp. 1855–1862 (2009)Google Scholar
  10. 10.
    Amenta, N., Choi, S., Kolluri, R.: The Power Crust, Unions of Balls, and the Medial Axis Transform. Computational Geometry: Theory and Applications 19(2-3), 127–153 (2001)MATHMathSciNetGoogle Scholar
  11. 11.
    Quinlan, S.: Efficient distance computations between non-convex objects. In: International Conference on Robotics and Automation, pp. 3324–3329 (1994)Google Scholar
  12. 12.
    Giesen, J., Miklos, B., Pauly, M., Wormser, C.: The scale axis transform. In: Symposium on Computational Geometry, pp. 106–115 (2009)Google Scholar
  13. 13.
    Garcia, M., Bayona, S., Toharia, P., Mendoza, C.: Comparing sphere-tree generators and hierarchy updates for deformable objects collision detection. In: International Symposium on Visual Computing, pp. 167–174 (2005)Google Scholar
  14. 14.
    Stolpner, S., Whitesides, S.: Medial axis approximation with bounded error. In: International Symposium on Voronoi Diagrams, pp. 171–180 (2009)Google Scholar
  15. 15.
    Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast proximity queries with swept sphere volumes. Tech. rep., University of North Carolina at Chapel Hill (1999)Google Scholar
  16. 16.
    Foskey, M., Lin, M.C., Manocha, D.: Efficient computation of a simplified medial axis. In: Solid Modeling and Applications, pp. 96–107 (2003)Google Scholar
  17. 17.
    Sud, A., Govindaraju, N.K., Gayle, R., Manocha, D.: Interactive 3d distance field computation using linear factorization. In: ACM Symposium on Interactive 3D Graphics and Games, pp. 117–124 (2006)Google Scholar
  18. 18.
    Rong, G., Tan, T.S.: Jump flooding in GPU with applications to Voronoi diagram and distance transform. In: ACM Symposium on Interactive 3D graphics and Games, pp. 109–116 (2006)Google Scholar
  19. 19.
    Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM Journal of Computing 16(1), 78–96 (1987)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Edelsbrunner, H.: The union of balls and its dual shape. In: Symposium on Computational Geometry, pp. 218–231 (1993)Google Scholar
  21. 21.
    Gärtner, B.: Fast and robust smallest enclosing balls. In: European Symposium on Algorithms, pp. 325–338 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Svetlana Stolpner
    • 1
  • Paul Kry
    • 1
  • Kaleem Siddiqi
    • 1
  1. 1.School of Computer Science and Centre for Intelligent MachinesMontréalCanada

Personalised recommendations