Application of Rough Sets Theory in Air Quality Assessment

  • Pavel Jirava
  • Jiri Krupka
  • Miloslava Kasparova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6401)

Abstract

This paper analyses rough sets approaches to air quality assessment in given locality of the Czech Republic (CR). Original data for modeling we obtained from the daily observation of air polluting substances concentrations in town Pardubice. Two applications were used for decision rules computation and achieved results are compared and analysed. Output of this paper is the proposal how to assign an air quality index (AQI) to the selected locality, on the basis of various attributes.

Keywords

Rough sets decision trees region air quality assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Research Council of The National Academies.: The Environment: Challenges for the Chemical Sciences in the 21st Century. National Academies Press, Washington DC (2003)Google Scholar
  2. 2.
    Hersh, M.: Mathematical Modelling for Sustainable Development. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufman Publishers, San Francisco (2005)MATHGoogle Scholar
  4. 4.
    Czech Hydrometeorological Institute (2009), http://www.chmi.cz
  5. 5.
    Kasparova, M., Krupka, J., Jirava, P.: Approaches to Air Quality Assessment in Locality of the Pardubice Region. In: 5th Int. Conf. Environmental Accounting Sustainable Development Indicators (EMAN 2009), Prague, Czech Repulbic, pp. 1–12 (2009)Google Scholar
  6. 6.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough-Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapur (1998)Google Scholar
  7. 7.
    Pawlak, Z.: Rough sets. Int. J. of Information and Computer Sciences 11, 341–356 (1982)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Pawlak, Z.: A Primer on Rough Sets: A New Approach to Drawing Conclusions from Data. Cardozo Law Review 22, 1407–1415 (2001)MathSciNetGoogle Scholar
  9. 9.
    Aviso, K.B., Tan, R.R., Culaba, A.B.: Application of Rough Sets for Environmental Decision Support in Industry. Clean Technologies and Environmental Policy 10, 53–66 (2007)CrossRefGoogle Scholar
  10. 10.
    Pal, S.K., Skowron, A. (eds.): Rough-Fuzzy Hybridization: A New Trend in Decision Making. Springer, Singapore (1999)MATHGoogle Scholar
  11. 11.
    Olej, V., Krupka, J.: Analysis of Decision Processes of Automation Control Systems with Uncertainty. University Press Elfa, Kosice (1996)Google Scholar
  12. 12.
    Sakai, H., Nakata, M.: On Possible Rules and Apriori Algorithm in Non-deterministic Information Systems. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 264–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Stanczyk, U.: On Construction of Optimised Rough Set-based Classifier. Int. J. of Mathematical Models and Methods in Applied Sciences 2, 533–542 (2008)Google Scholar
  14. 14.
    Nguyen, S.H., Nguyen, H.S.: Hierarchical Rough Classifiers. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 40–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Zhou, Z.H., Jiang, Y., Chen, S.F.: Extracting Symbolic Rules from Trained Neural Network Ensembles. AI Communications 16, 3–15 (2003)Google Scholar
  16. 16.
    Kudo, Y., Murai, T.: A method of Generating Decision Rules in Object Oriented Rough Set Models. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 338–347. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Odajima, K., Hayashi, Y., Tianxia, G., et al.: Greedy Rule Generation from Discrete Data and Its Use in Neural Network Rule Extraction. Neur. Networks. 21, 1020–1028 (2008)CrossRefGoogle Scholar
  18. 18.
    Vascak, J., Rutrich, M.: Path Planning in Dynamic Environment Using Fuzzy Cognitive Maps. In: 6th International Symposium on Applied Machine Inteligence and Informatics (SAMII), pp. 5–9. University Press Elfa, Kosice (2008)CrossRefGoogle Scholar
  19. 19.
    Cyran, K.A.: Comparison of Neural Network and Rule-based Classifiers Used as Selection Determinants in Evolution of Feature Space. WSEAS Transactions on Systems 6, 549–555 (2007)Google Scholar
  20. 20.
    Andoga, R., Fozo, L., Madarasz, L.: Intelligent Approaches in Modeling and Control of a Small Turbojet Engines. In: 11th International Conference on Intelligent Engineering Systems (INES 2007), p. 59. IEEE, Los Alamitos (2007)Google Scholar
  21. 21.
    Tkac, J., Chovanec, A.: The Application of Neural Networks for Detection and Identification of Fault Conditions. Metalurgija/Metallurgy 49, 566–569 (2010)Google Scholar
  22. 22.
    Simonova, S., Panus, J.: Genetic Algorithms for Optimization of Thematic Regional Clusters. In: Conf. on Computer as a Tool (EUROCON 2007), Warsaw, Poland, pp. 798–803 (2007)Google Scholar
  23. 23.
    Athanasiadis, I.N., Kaburlasos, V.G., Mitkas, P.A., Petridis, V.: Applying Machine Learning Techniques on Air Quality Data for Real-Time Decision Support. In: 1st Int. Symposium on Information Technologies in Environmental Engineering (ITEE), Gdansk, Poland, p. 51 (2003)Google Scholar
  24. 24.
    Rutkowski, L., Siekmann, J., Tadeusiewicz, R., Zadeh, L.A.: Artificial Intelligence and Soft Computing. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Jirava, P., Krupka, J.: Classification Model based on Rough and Fuzzy Sets Theory. In: 6th WSEAS Int. Conf. on Computational Intelligence, Man-machine Systems and Cybernetics, Puerto De La Cruz, Tenerife, Spain, pp. 199–203 (2007)Google Scholar
  26. 26.
    Skowron, A., Bazan, J., Szczuka, M.S., Wroblewski, J.: Rough Set Exploration System, version 2.2.2 (2009), http://logic.mimuw.edu.pl/~rses/
  27. 27.
    Grzymala-Busse, J.W., Wang, A.Z.: Modified algorithms LEM1 and LEM2 for Rule Induction from Data with Missing Attribute Values. In: 5th Int. Workshop on Rough Sets and Soft Computing (RSSC 1997) at the Third Joint Conference on Information Sciences (JCIS 1997), pp. 69–72. Research Triangle Park, NC (1997)Google Scholar
  28. 28.
    Kasparova, M., Krupka, J.: Air Quality Modelling by Decision Trees in the Czech Republic Locality. In: 8th WSEAS Int. Conf. on Applied Informatics and Communications (AIC 2008), pp. 196–201. WSEAS Press, Greece (2008)Google Scholar
  29. 29.
    Graf, H.J., Musters, C.J.M., Keurs, W.J.: Regional Opportunities for Sustainable Development: Theory, Methods and Applications. Kluwer Academic Publisher, Dordrecht (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pavel Jirava
    • 1
  • Jiri Krupka
    • 1
  • Miloslava Kasparova
    • 1
  1. 1.Institute of System Engineering and Informatics, Faculty of Economics and AdministrationUniversity of PardubicePardubiceCzech Republic

Personalised recommendations