Abstract
In this paper we study the problem of solving hard propositional satisfiability problem (SAT) instances in a computing grid or cloud, where run times and communication between parallel running computations are limited.We study analytically an approach where the instance is partitioned iteratively into a tree of subproblems and each node in the tree is solved in parallel.We present new methods for constructing partitions which combine clause learning and lookahead. The methods are incorporated into the iterative approach and its performance is demonstrated with an extensive comparison against the best sequential solvers in the SAT competition 2009 as well as against two efficient parallel solvers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Strategies for solving SAT in Grids by randomized search. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 125–140. Springer, Heidelberg (2008)
Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Information Processing Letters 47(4), 173–180 (1993)
Luby, M., Ertel, W.: Optimal parallelization of Las Vegas algorithms. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 463–474. Springer, Heidelberg (1994)
Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 275(5296), 51–54 (1997)
Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1–2), 43–62 (2001)
Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Incorporating clause learning in grid-based randomized SAT solving. Journal on Satisfiability, Boolean Modeling and Computation 6, 223–244 (2009)
Hamadi, Y., Jabbour, S., Saïs, L.: ManySAT: a parallel SAT solver. Journal on Satisfiability, Boolean Modeling and Computation 6, 245–262 (2009)
Speckenmeyer, E., Monien, B., Vornberger, O.: Superlinear speedup for parallel backtracking. In: Houstis, E.N., Polychronopoulos, C.D., Papatheodorou, T.S. (eds.) ICS 1987. LNCS, vol. 297, pp. 985–993. Springer, Heidelberg (1988)
Böhm, M., Speckenmeyer, E.: A fast parallel SAT-solver: Efficient workload balancing. Annals of Mathematics and Artificial Intelligence 17(4–3), 381–400 (1996)
Zhang, H., Bonacina, M., Hsiang, J.: PSATO: A distributed propositional prover and its application to quasigroup problems. Journal of Symbolic Computation 21(4), 543–560 (1996)
Jurkowiak, B., Li, C., Utard, G.: A parallelization scheme based on work stealing for a class of SAT solvers. Journal of Automated Reasoning 34(1), 73–101 (2005)
Michel, L., See, A., van Hentenryck, P.: Parallelizing constraint programs transparently. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 514–528. Springer, Heidelberg (2007)
Chrabakh, W., Wolski, R.: GridSAT: a system for solving satisfiability problems using a computational grid. Parallel Computing 32(9), 660–687
Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning the search space of a randomized search. In: Serra, R. (ed.) AI*IA 2009. LNCS (LNAI), vol. 5883, pp. 243–252. Springer, Heidelberg (2009)
Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT in grids. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 430–435. Springer, Heidelberg (2006)
Segre, A.M., Forman, S.L., Resta, G., Wildenberg, A.: Nagging: A scalable fault-tolerant paradigm for distributed search. Artificial Intelligence 140(1/2), 71–106 (2002)
Blochinger, W., Sinz, C., Küchlin, W.: Parallel propositional satisfiability checking with distributed dynamic learning. Parallel Computing 29(7), 969–994 (2003)
Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 155–184. IOS Press, Amsterdam (2009)
Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg (1997)
Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March_eq: Implementing additional reasoning into an efficient look-ahead SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)
Le Berre, D.: Exploiting the real power of unit propagation lookahead. In: Proc. SAT 2001. Electronic Notes in Discrete Mathematics, vol. 9, pp. 59–80. Elsevier, Amsterdam (2001)
Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)
Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)
Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: Proc. ICCAD 2001, pp. 279–285. ACM, New York (2001)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Giunchiglia, E., Maratea, M., Tacchella, A.: (In)Effectiveness of look-ahead techniques in a modern SAT solver. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 842–846. Springer, Heidelberg (2003)
Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. Technical Report 10/1, Institute for Formal Models and Verification, Johannes Kepler University (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hyvärinen, A.E.J., Junttila, T., Niemelä, I. (2010). Partitioning SAT Instances for Distributed Solving. In: Fermüller, C.G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science, vol 6397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16242-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-16242-8_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16241-1
Online ISBN: 978-3-642-16242-8
eBook Packages: Computer ScienceComputer Science (R0)