Skip to main content

Partitioning SAT Instances for Distributed Solving

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2010)

Abstract

In this paper we study the problem of solving hard propositional satisfiability problem (SAT) instances in a computing grid or cloud, where run times and communication between parallel running computations are limited.We study analytically an approach where the instance is partitioned iteratively into a tree of subproblems and each node in the tree is solved in parallel.We present new methods for constructing partitions which combine clause learning and lookahead. The methods are incorporated into the iterative approach and its performance is demonstrated with an extensive comparison against the best sequential solvers in the SAT competition 2009 as well as against two efficient parallel solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Strategies for solving SAT in Grids by randomized search. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 125–140. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Information Processing Letters 47(4), 173–180 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Luby, M., Ertel, W.: Optimal parallelization of Las Vegas algorithms. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 463–474. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  4. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 275(5296), 51–54 (1997)

    Article  Google Scholar 

  5. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1–2), 43–62 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Incorporating clause learning in grid-based randomized SAT solving. Journal on Satisfiability, Boolean Modeling and Computation 6, 223–244 (2009)

    MATH  Google Scholar 

  7. Hamadi, Y., Jabbour, S., Saïs, L.: ManySAT: a parallel SAT solver. Journal on Satisfiability, Boolean Modeling and Computation 6, 245–262 (2009)

    MATH  Google Scholar 

  8. Speckenmeyer, E., Monien, B., Vornberger, O.: Superlinear speedup for parallel backtracking. In: Houstis, E.N., Polychronopoulos, C.D., Papatheodorou, T.S. (eds.) ICS 1987. LNCS, vol. 297, pp. 985–993. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  9. Böhm, M., Speckenmeyer, E.: A fast parallel SAT-solver: Efficient workload balancing. Annals of Mathematics and Artificial Intelligence 17(4–3), 381–400 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, H., Bonacina, M., Hsiang, J.: PSATO: A distributed propositional prover and its application to quasigroup problems. Journal of Symbolic Computation 21(4), 543–560 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jurkowiak, B., Li, C., Utard, G.: A parallelization scheme based on work stealing for a class of SAT solvers. Journal of Automated Reasoning 34(1), 73–101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Michel, L., See, A., van Hentenryck, P.: Parallelizing constraint programs transparently. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 514–528. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Chrabakh, W., Wolski, R.: GridSAT: a system for solving satisfiability problems using a computational grid. Parallel Computing 32(9), 660–687

    Google Scholar 

  14. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning the search space of a randomized search. In: Serra, R. (ed.) AI*IA 2009. LNCS (LNAI), vol. 5883, pp. 243–252. Springer, Heidelberg (2009)

    Google Scholar 

  15. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT in grids. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 430–435. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Segre, A.M., Forman, S.L., Resta, G., Wildenberg, A.: Nagging: A scalable fault-tolerant paradigm for distributed search. Artificial Intelligence 140(1/2), 71–106 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Blochinger, W., Sinz, C., Küchlin, W.: Parallel propositional satisfiability checking with distributed dynamic learning. Parallel Computing 29(7), 969–994 (2003)

    Article  Google Scholar 

  18. Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 155–184. IOS Press, Amsterdam (2009)

    Google Scholar 

  19. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March_eq: Implementing additional reasoning into an efficient look-ahead SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Le Berre, D.: Exploiting the real power of unit propagation lookahead. In: Proc. SAT 2001. Electronic Notes in Discrete Mathematics, vol. 9, pp. 59–80. Elsevier, Amsterdam (2001)

    Google Scholar 

  22. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  24. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: Proc. ICCAD 2001, pp. 279–285. ACM, New York (2001)

    Google Scholar 

  25. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Giunchiglia, E., Maratea, M., Tacchella, A.: (In)Effectiveness of look-ahead techniques in a modern SAT solver. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 842–846. Springer, Heidelberg (2003)

    Google Scholar 

  27. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. Technical Report 10/1, Institute for Formal Models and Verification, Johannes Kepler University (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hyvärinen, A.E.J., Junttila, T., Niemelä, I. (2010). Partitioning SAT Instances for Distributed Solving. In: Fermüller, C.G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science, vol 6397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16242-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16242-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16241-1

  • Online ISBN: 978-3-642-16242-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics