This paper introduces a nested sequent system for predicate logic. The system features a structural universal quantifier and a universally closed existential rule. One nice consequence of this is that proofs of sentences cannot contain free variables. Another nice consequence is that the assumption of a non-empty domain is isolated in a single inference rule. This rule can be removed or added at will, leading to a system for free logic or classical predicate logic, respectively. The system for free logic is interesting because it has no need for an existence predicate. We see syntactic cut-elimination and completeness results for these two systems as well as two standard applications: Herbrand’s Theorem and interpolation.


Inference Rule Proof System Predicate Logic Predicate Symbol Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic: from foundations to applications. Proc. Logic Colloquium, Keele, UK, 1993, pp. 1–32. Oxford University Press, New York (1996)Google Scholar
  2. 2.
    Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics: a survey. Journal of Logic and Computation 13, 1–27 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Belnap Jr., N.D.: Display logic. Journal of Philosophical Logic 11, 375–417 (1982)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bencivenga, E.: Free logics. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic: Volume III: Alternatives to Classical Logic, pp. 373–426. Reidel, Dordrecht (1986)Google Scholar
  5. 5.
    Brünnler, K.: Deep sequent systems for modal logic. Archive for Mathematical Logic 48(6), 551–577 (2009), MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brünnler, K., Straßburger, L.: Modular sequent systems for modal logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 152–166. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Michael Dunn, J.: A ‘Gentzen’ system for positive relevant implication. The Journal of Symbolic Logic 38, 356–357 (1974) (Abstract)Google Scholar
  8. 8.
    Fitting, M., Mendelsohn, R.L.: First-order Modal Logic. Synthese library, vol. 277. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland Publishing Co., Amsterdam (1969)Google Scholar
  10. 10.
    Goré, R., Postniece, L., Tiu, A.: Taming displayed tense logics using nested sequents with deep inference. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 189–204. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Guglielmi, A.: Mismatch (2003),
  12. 12.
    Guglielmi, A.: A system of interaction and structure. ACM Transactions on Computational Logic 8(1), 1–64 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53, 119–135 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mints, G.: Cut-elimination theorem in relevant logics. The Journal of Soviet Mathematics 6, 422–428 (1976)CrossRefGoogle Scholar
  15. 15.
    Poggiolesi, F.: The tree-hypersequent method for modal propositional logic. In: Malinowski, J., Makinson, D., Wansing, H. (eds.) Towards Mathematical Philosophy. Trends in Logic, pp. 9–30. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Sadrzadeh, M., Dyckhoff, R.: Positive logic with adjoint modalities: Proof theory, semantics and reasoning about information. Review of Symbolic Logic (to appear, 2010)Google Scholar
  17. 17.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  18. 18.
    Viganò, L.: Labelled Non-Classical Logics. Kluwer Academic Publishers, Dordrecht (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kai Brünnler
    • 1
  1. 1.Institut für angewandte Mathematik und InformatikUniversität BernBernSwitzerland

Personalised recommendations