Skip to main content

Computational Algorithm for Some Problems with Variable Geometrical Structure

  • Chapter
Transactions on Computational Science VIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6260))

  • 370 Accesses

Abstract

The work is devoted to the computational algorithm for a problem of plant growth. The plant is represented as a system of connected intervals corresponding to branches. We compute the concentration distributions inside the branches. The originality of the problem is that the geometry of the plant is not a priori given. It evolves in time depending on the concentrations of plant hormones found as a solution of the problem. New branches appear in the process of plant growth. The algorithm is adapted to an arbitrary plant structure and an arbitrary number of branches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krug, H., Liebig, H.-P.: International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation. ISHS Acta Horticulturae, vol. 248 (1989)

    Google Scholar 

  2. Godin, C., et al.: 4th International Workshop on Functional-Structural Plant Models. Publication UMR AMAP (2004)

    Google Scholar 

  3. Bessonov, N., Volpert, V.: Dynamic Models of Plant Growth. Publibook, Paris (2006)

    Google Scholar 

  4. Bessonov, N., Morozova, N., Volpert, V.: Branching Pattern in Plants. Bull. Math. Biology 70(3), 868–893 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G.V., Long, J.A., Meyerowitz, E.M.: Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Current Biology 15, 1899–1911 (2005)

    Article  Google Scholar 

  6. Treml, B.S., Winderl, S., Radykewicz, R., Herz, M., Schweizer, G., Hutzler, P., Glawischnig, E., Ruiz, R.A.: The Gene ENHANCER OF PINOID Controls Cotyledon Development in the Arabidopsis Embryo. Development 139(18), 4063–4074 (2005)

    Article  Google Scholar 

  7. Reinhardt, D.: Regulation of Phyllotaxis. Int. J. Dev. Biol. 49, 539–546 (2005)

    Article  Google Scholar 

  8. Smith, R.S., Guyomarc’h, S., Mandel, T., Reinhardt, D., Kuhlemeier, C., Prusinkiewicz, P.: A Plausible Model of Phyllotaxis. PNAS 103(5), 1301–1306 (2006)

    Article  Google Scholar 

  9. Jonsson, H., Heisler, M.G., Shapiro, B.E., Meyerowitz, E.M., Mjolsness, E.: An Auxin-Driven Polarized Transport Model for Phyllotaxis. PNAS 103(5), 1633–1638 (2006)

    Article  Google Scholar 

  10. Fleming, A.J.: Formation of Primordia and Phyllotaxy. Current Opinion in Plant Biology 8, 53–58 (2005)

    Article  MathSciNet  Google Scholar 

  11. Reinhardt, D., Mandel, T., Kuhlemeier, C.: Auxin Regulates the Initiation and Radial Position of Plant Lateral Organs. Plant Cell 12, 507–518 (2000)

    Article  Google Scholar 

  12. Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., Kuhlemeier, C.: Regulation of Phyllotaxis by Polar Auxin Transport. Nature 462, 255–260 (2003)

    Article  Google Scholar 

  13. Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., Scheres, B.: The PIN Auxin Efflux Facilitator Network Controls Growth and Patterning in Arabidopsis Roots. Nature 433, 39–44 (2005)

    Article  Google Scholar 

  14. Vernoux, T., Kronenberger, J., Grandjean, O., Laufs, P., Traas, J.: PIN-FORMED 1 Regulates Cell Fate at the Periphery of the Shoot Apical Meristem. Development 127, 5157–5165 (2000)

    Google Scholar 

  15. Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., Palme, K.: Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue. Science 282, 2226–2230 (1998)

    Article  Google Scholar 

  16. Aida, M., Vernoux, T., Furutani, M., Traas, J., Tasaka, M.: Roles of PIN-FORMED1 and MONOPTEROS in Pattern Formation of the Apical Region of the Arabidopsis Embryo. Development 129, 3965–3974 (2002)

    Google Scholar 

  17. Stieger, P.A., Reinhardt, D., Kuhlemeier, C.: The Auxin Influx Carrier is Essential for Correct Leaf Positioning. Plant J. 32, 509–517 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bessonov, N., Volpert, V. (2010). Computational Algorithm for Some Problems with Variable Geometrical Structure. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VIII. Lecture Notes in Computer Science, vol 6260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16236-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16236-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16235-0

  • Online ISBN: 978-3-642-16236-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics