Skip to main content

Numerical validation of a constraints-based multiscale simulation method for solids

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 79)

Summary

We present numerical validation studies for a concurrent multiscale method designed to combine molecular dynamics and finite element analysis targeting the simulation of solids. The method is based on an overlapping domaindecomposition and uses weak matching constraints to enforce matching between the finite element displacement field and the projection of the molecular dynamics displacement field on the mesh. A comparison between our method and the well-known bridging domain method by Xiao and Belytschko [22] is presented. As part of our validation study we discuss applicability of the method to the simulation of fracture propagation and show results.

Key words

  • molecular dynamics
  • multiscale
  • finite elements
  • weak coupling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-16229-9_9
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-16229-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science Publications, 1987.

    Google Scholar 

  2. P. Bastian and K. Birken and K. Johannsen and S. Lang and N. Neuss and H. Rentz-Reichert and C. Wieners, UG - A Flexible Software Toolbox for Solving Partial Differential Equations, Comp. Vis. Science 1 (1997), pp. 27–40.

    CrossRef  MATH  Google Scholar 

  3. J. Q. Broughton and F. F. Abraham and N. Bernstein and E. Kaxira, Concurrent coupling of length scales: Methodology and application, Phys. Rev. B 60 (1999), pp. 2391–2403.

    CrossRef  Google Scholar 

  4. D. E. Farrell and H. S. Park and W. K. Liu, Implementation aspects of the bridging scale method and application to intersonic crack propagation, Int. J. Numer. Meth. Engng. 60 (2007), pp. 583–605.

    CrossRef  Google Scholar 

  5. M. Griebel, S. Knapek and G. Zumbusch, Numerical Simulation in Molecular Dynamics, Springer, 2007

    Google Scholar 

  6. M. Griebel and J. Hamaekers,Molecular dynamics simulations of the mechanical properties of polyethylene-carbon nanotube composites, Handbook of heoretical Comp. Nanotechnology 9 (2004), pp. 409–454.

    Google Scholar 

  7. M. Griebel and J. Hamaekers, Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites, Comp. Meth. Appl. Engng. 193 (2006), pp. 1773–1788.

    CrossRef  MathSciNet  Google Scholar 

  8. B. L. Holian and R. Ravelo,Fracture simulation using large-scale molecular dynamics, Phys. Rev. B 51 (1995), pp. 11275–11288.

    CrossRef  Google Scholar 

  9. J.-S. Chen, H. Teng and A. Nakano,Wavelet-based multi-scale coarse graining approach for DNA molecules, Finite Element Anal. and Design 43 (2007), pp. 346–360.

    CrossRef  MathSciNet  Google Scholar 

  10. A. Needleman and E. Van der Giessen, Micromechanics of Fracture: Connecting Physics to Engineering, MRS Bulletin 26 (2001), pp. 211–214.

    Google Scholar 

  11. R. E. Miller and E. B. Tadmor,A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods, Modelling Simul. Sci. Engng. 17 (2009), pp. 053001–053052.

    CrossRef  Google Scholar 

  12. W. E and P. Ming, Cauchy-Born Rule and Stability of Crystalline Solids: Static Problems, Arch. Rational Mech. Anal. 183 (2007), pp. 241–297.

    Google Scholar 

  13. K. Fackeldey, D. Krause, R. Krause and C. Lenzen, Coupling Molecular Dynamics and Continua with Weak Constraints, Submitted to SIAM MMS.

    Google Scholar 

  14. D. Thomas A Generic Approach to Multiscale Coupling – Concepts and Applications, Diploma thesis, Institute for Numerical Simulation Bonn, 2008.

    Google Scholar 

  15. T. Belytschko,W. K. Liu and B. Moran, Nonlinear Finite Elements for Continua and Structures, Wiley, 2006.

    Google Scholar 

  16. G. J. Wagner and W. K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comp. Phys. 190 (2003), pp. 249–274.

    CrossRef  MATH  Google Scholar 

  17. K. Fackeldey and R. Krause, Multiscale Coupling in Function Space - Weak Coupling between Molecular Dynamics and Continuum Mechanics, Int. J. Numer. Meth. Engng. 79 (2009), pp. 1517–1535.

    CrossRef  Google Scholar 

  18. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2. ed, Springer (2006).

    MATH  Google Scholar 

  19. A. C. To and S. Li, Perfectly matched multiscale simulation, Phys. Rev. B 72 (2005), pp. 035414–035422.

    CrossRef  Google Scholar 

  20. S. Li, X. Liu, A. Agrawal and A. C. To, Perfectly matched multiscale simulations for discrete lattices: Extension to multiple dimensions, Phys. Rev. B 74 (2006), pp. 045418–045432.

    CrossRef  Google Scholar 

  21. X. Li and W. E, Variational boundary conditions for molecular dynamics simulations of crystalline solids at finite temperature: Treatment of the thermal bath, Phys. Rev. B 76 (2007), pp. 10078–10093.

    Google Scholar 

  22. S. P. Xiao and T. Belytschko, A bridging domain method for coupling continua with molecular dynamics, Comp. Meth. Appl. Engng. 193 (2004), pp. 1645–1669.

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. G. Anciaux and O. Coulaud and J. Roman, High Performance Multiscale Simulation or Crack Propagation, Proceedings of the 2006 International Conference Workshops on Parallel Processing, pp. 473–480.

    Google Scholar 

  24. K. Fackeldey, D. Krause and R. Krause, A Note on the Dissipative Effect of Lumping in the Bridging Domain Method, Private Notes.

    Google Scholar 

  25. Michael A. Heroux et al., An overview of the Trilinos project, ACM Trans. Math. Softw. 31 (2005), pp. 397–423.

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. H. S. Park, E. G. Karpov, W. K. Liu and P. A. Klein, The bridging scale for twodimensional atomistic/continuum coupling, Philosophical Magazine 85 (2005), pp. 79–113.

    CrossRef  Google Scholar 

  27. G. Anciaux, O. Coulaud, J. Roman and G. Zerah, Ghost force reduction and spectral analysis of the 1D bridging method, Technical Report INRIA (2008).

    Google Scholar 

  28. M. Zhou, A new look at the atomic level virial stress: on continuum-molecular system equivalence, Proc. R. Soc. London A 459 (2003), pp. 2347–2392.

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Fackeldey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fackeldey, K., Krause, D., Krause, R. (2011). Numerical validation of a constraints-based multiscale simulation method for solids. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations V. Lecture Notes in Computational Science and Engineering, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16229-9_9

Download citation