Summary
We present numerical validation studies for a concurrent multiscale method designed to combine molecular dynamics and finite element analysis targeting the simulation of solids. The method is based on an overlapping domaindecomposition and uses weak matching constraints to enforce matching between the finite element displacement field and the projection of the molecular dynamics displacement field on the mesh. A comparison between our method and the well-known bridging domain method by Xiao and Belytschko [22] is presented. As part of our validation study we discuss applicability of the method to the simulation of fracture propagation and show results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science Publications, 1987.
P. Bastian and K. Birken and K. Johannsen and S. Lang and N. Neuss and H. Rentz-Reichert and C. Wieners, UG - A Flexible Software Toolbox for Solving Partial Differential Equations, Comp. Vis. Science 1 (1997), pp. 27–40.
J. Q. Broughton and F. F. Abraham and N. Bernstein and E. Kaxira, Concurrent coupling of length scales: Methodology and application, Phys. Rev. B 60 (1999), pp. 2391–2403.
D. E. Farrell and H. S. Park and W. K. Liu, Implementation aspects of the bridging scale method and application to intersonic crack propagation, Int. J. Numer. Meth. Engng. 60 (2007), pp. 583–605.
M. Griebel, S. Knapek and G. Zumbusch, Numerical Simulation in Molecular Dynamics, Springer, 2007
M. Griebel and J. Hamaekers,Molecular dynamics simulations of the mechanical properties of polyethylene-carbon nanotube composites, Handbook of heoretical Comp. Nanotechnology 9 (2004), pp. 409–454.
M. Griebel and J. Hamaekers, Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites, Comp. Meth. Appl. Engng. 193 (2006), pp. 1773–1788.
B. L. Holian and R. Ravelo,Fracture simulation using large-scale molecular dynamics, Phys. Rev. B 51 (1995), pp. 11275–11288.
J.-S. Chen, H. Teng and A. Nakano,Wavelet-based multi-scale coarse graining approach for DNA molecules, Finite Element Anal. and Design 43 (2007), pp. 346–360.
A. Needleman and E. Van der Giessen, Micromechanics of Fracture: Connecting Physics to Engineering, MRS Bulletin 26 (2001), pp. 211–214.
R. E. Miller and E. B. Tadmor,A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods, Modelling Simul. Sci. Engng. 17 (2009), pp. 053001–053052.
W. E and P. Ming, Cauchy-Born Rule and Stability of Crystalline Solids: Static Problems, Arch. Rational Mech. Anal. 183 (2007), pp. 241–297.
K. Fackeldey, D. Krause, R. Krause and C. Lenzen, Coupling Molecular Dynamics and Continua with Weak Constraints, Submitted to SIAM MMS.
D. Thomas A Generic Approach to Multiscale Coupling – Concepts and Applications, Diploma thesis, Institute for Numerical Simulation Bonn, 2008.
T. Belytschko,W. K. Liu and B. Moran, Nonlinear Finite Elements for Continua and Structures, Wiley, 2006.
G. J. Wagner and W. K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comp. Phys. 190 (2003), pp. 249–274.
K. Fackeldey and R. Krause, Multiscale Coupling in Function Space - Weak Coupling between Molecular Dynamics and Continuum Mechanics, Int. J. Numer. Meth. Engng. 79 (2009), pp. 1517–1535.
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2. ed, Springer (2006).
A. C. To and S. Li, Perfectly matched multiscale simulation, Phys. Rev. B 72 (2005), pp. 035414–035422.
S. Li, X. Liu, A. Agrawal and A. C. To, Perfectly matched multiscale simulations for discrete lattices: Extension to multiple dimensions, Phys. Rev. B 74 (2006), pp. 045418–045432.
X. Li and W. E, Variational boundary conditions for molecular dynamics simulations of crystalline solids at finite temperature: Treatment of the thermal bath, Phys. Rev. B 76 (2007), pp. 10078–10093.
S. P. Xiao and T. Belytschko, A bridging domain method for coupling continua with molecular dynamics, Comp. Meth. Appl. Engng. 193 (2004), pp. 1645–1669.
G. Anciaux and O. Coulaud and J. Roman, High Performance Multiscale Simulation or Crack Propagation, Proceedings of the 2006 International Conference Workshops on Parallel Processing, pp. 473–480.
K. Fackeldey, D. Krause and R. Krause, A Note on the Dissipative Effect of Lumping in the Bridging Domain Method, Private Notes.
Michael A. Heroux et al., An overview of the Trilinos project, ACM Trans. Math. Softw. 31 (2005), pp. 397–423.
H. S. Park, E. G. Karpov, W. K. Liu and P. A. Klein, The bridging scale for twodimensional atomistic/continuum coupling, Philosophical Magazine 85 (2005), pp. 79–113.
G. Anciaux, O. Coulaud, J. Roman and G. Zerah, Ghost force reduction and spectral analysis of the 1D bridging method, Technical Report INRIA (2008).
M. Zhou, A new look at the atomic level virial stress: on continuum-molecular system equivalence, Proc. R. Soc. London A 459 (2003), pp. 2347–2392.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fackeldey, K., Krause, D., Krause, R. (2011). Numerical validation of a constraints-based multiscale simulation method for solids. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations V. Lecture Notes in Computational Science and Engineering, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16229-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-16229-9_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16228-2
Online ISBN: 978-3-642-16229-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)