Advertisement

Integrated Computer Models of 3-D Comb Drive Electrostatic MEMS Structures

  • Sławomir Wiak
  • Krzysztof Smółka
Part of the Studies in Computational Intelligence book series (SCI, volume 327)

Abstract

This paper deals with the numerical modeling of 3D structure of surface micromachined MEMS different comb drive geometries. The paper is devoted to the complex strategy of modeling, proposed by authors, of micro-actuators of comb structure. This methodology is based on vector field 3-D structural models and the object oriented models and lumped parameters as well, applied to the different structure of MEMS.

Keywords

Solid Modeling Object Oriented Model Movable Part Comb Drive Comb Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boser, B.E.: Surface micromachining An IC-compatible sensor technology, Berkeley, Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley (1998)Google Scholar
  2. Conant, R.A., Nee, J., Hart, M., Solgaard, O., Lau, K.Y., Muller, R.S.: Robustnes and Reliability of Micoromachined scanning Mirrors, Header for MEOM (1999)Google Scholar
  3. Conant, R.A., Nee, J.T., Lau, K.Y., Muller, R.S.: A flat high-frequency scanning micromirror. In: Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, pp. 6–9 (June 2000)Google Scholar
  4. Davies, F.R., Rodgers, M.S., Montague, S.: Design Tools and issues of silicon micromachined (MEMS) devices. In: Presented at the 2nd International Conference on Engineering Design and Automation, August 9-12, 1998, Maui, Hawaii (1998)Google Scholar
  5. Di Barba, P., Savini, A., Wiak, S.: Field Models in Electricity and Magnetism. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. Fedder, G.K., Mukherjee, T.: Physical design for surface-micromachined MEMS. In: 5th ACM/SIGDA Physical Design Workshop, Reston, VA, USA, April 15-17, 1996, pp. 53–60 (1996)Google Scholar
  7. Hoffmann, C.M.: Geometric and solid modeling. Morgan Kaufmann, San Mateo (1989)Google Scholar
  8. Iyer, S.V., Mukherjee, T.: Numerical spring models for behavioral simulation of MEMS Inertial Sensors. In: Proc. SPIE, vol. 4019, pp. 55–62 (2000)Google Scholar
  9. Iyer, S.V., Tamal, M., Fedder Gary, K.: Multi-mode sensitive layout synthesis of microresonator. In: International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators (April 1998)Google Scholar
  10. Iyer, S.V., Zhou, Y., Mukherjee, T.: Analytical modeling of cross-axis coupling in micromechanical springs. In: MSM 1999, San Juan, Puerto Rico, April 19-21 (1999)Google Scholar
  11. Jing, Q., Mukherjee, T., Fedder, G.K.: Schematic-based lumped parameterized behavioral modeling for suspended MEMS. In: Tech. Dig. Int. Conf. Computer-Aided Design, San Jose, CA, November 10-14, pp. 367–373 (2002)Google Scholar
  12. Li, J., Zhang, Q.X., Liu, A.Q.: Advanced fiber optical swiches using deep RIE (DRIE) fabrication. Sensors and Actuators A 102, 286–295 (2003)CrossRefGoogle Scholar
  13. OPERA-3D, User Guide, COBHAM/Vector Fields Limited, Oxford, England, ver. 13.0 (2009)Google Scholar
  14. Patterson, P.R., Hah, D.: A scanning micromirror with angular comb drive actuation. In: XV IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2002), Las Vegas, USA, January 20-24, pp. 544–547 (2002)Google Scholar
  15. Solutions – Software applications for engineering simulation and processes, vol. 1(1). Spring 1999 (2009), www.ansys.com
  16. Sulima, R., Wiak, S.: Modelling of vertical electrostatic comb-drive for scanning micromirrors. Compel. 27(4), 780–787 (2008)zbMATHGoogle Scholar
  17. Sulima, R., Wiak, S., Krawczyk, A.: A Dynamic Characteristic of the Model of an Electrostatic MEMS Drive for Micromirror Control. In: Proceedings of the 2008 International Conference on Electrical Machines, Vilamoura, Portugal (2008)Google Scholar
  18. Sun, W.: Multi-volume CAD modeling for heterogeneous object design and fabrication. Journal of Computer Science and Technology 15(1), 27–36 (2000)CrossRefGoogle Scholar
  19. Wiak, S., Cader, A., Drzymała, P., Welfle, H.: Virtual modeling and optimal design of intelligent micro-accelerometers. In: Rutkowski, L., Siekmann, J., Tadeusiewicz, R., Zadeh, L.A. (eds.). Subseries LNCS, pp. 942–947. Springer, Heidelberg (2004)Google Scholar
  20. Wiak, S., Smółka, K.: Numerical modelling of 3-D comb drive electrostatic accelerometers structure (method of Levitation Force Reduction). Compel 28(3), 593–602 (2009)zbMATHGoogle Scholar
  21. Wiak, S., Smółka, K., Dems, M., Komęza, K.: Numerical (solid) modeling of 3-D intelligent comb drive accelerometer structure - mechanical problems. Electrical Review (3), 593–602 (2008)Google Scholar
  22. Zhou, Y., Fedder, G.K. (advisor: prof.), Mukherjee, T. (co-advisor: dr.).: Layout synthesis of accelerometers, MS Project Report, Department of Electrical and Computer Engineering, Carnegie Mellon University (August 1998)Google Scholar
  23. Zhang, G.: Design and simulation of a CMOS-MEMS accelerometer, Project Report, Carnegie Mellon University (May 1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sławomir Wiak
    • 1
  • Krzysztof Smółka
    • 1
  1. 1.Institute of Mechatronics and Information SystemsTechnical University of LodzLodzPoland

Personalised recommendations