Skip to main content

An Approximation Algorithm for Computing a Parsimonious First Speciation in the Gene Duplication Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6398))

Abstract

We consider the following problem: given a forest of gene family trees on a set of genomes, find a first speciation which splits these genomes into two subsets and minimizes the number of gene duplications that happened before this speciation. We call this problem the Minimum Duplication Bipartition Problem. Using a generalization of the Minimum Edge-Cut Problem, known as Submodular Function Minimization, we propose a polynomial time and space 2-approximation algorithm for the Minimum Duplication Bipartition Problem. We illustrate the potential of this algorithm on both synthetic and real data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansal, M.S., et al.: Heuristics for the gene-duplication problem: A Θ(n) speed-up for the local search. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 238–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Bansal, M.S., Shamir, R.: A Note on the Fixed Parameter Tractability of the Gene-Duplication Problem (submitted, 2010)

    Google Scholar 

  3. Blomme, T., van de Peer, Y., et al.: The gain and loss of genes during 600 millions years of vertebrate evolution. Genome Biol. 7, R43 (2006)

    Google Scholar 

  4. Bryant, D.: Hunting for trees, building trees and comparing trees: theory and methods in phylogenetic analysis. Ph.D. thesis, Dept. of Math., Univ. of Canterbury, New Zealand (1997)

    Google Scholar 

  5. Burleig, J.G., et al.: Genome-scale phylogenetics: Inferring the plant tree of life from 18,896 discordant gene trees Systematic Biology (in press, 2010)

    Google Scholar 

  6. Byrka, J., Guillemot, S., Jansson, J.: New Results on Optimizing Rooted Triplets Consistency. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 484–495. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Chauve, C., El-Mabrouk, N.: New perspectives on gene family evolution: losses in reconciliation and a link with supertrees. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Chauve, C., Ouangraoua, A.: A 3-approximation algorithm for computing a parsimonious first speciation in the gene duplication model. arXiv:0904.1645v2 (2009)

    Google Scholar 

  9. De Bie, T., et al.: CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006)

    Article  PubMed  Google Scholar 

  10. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete Math., vol. 58. Elsevier, Amsterdam (2005)

    Google Scholar 

  11. Górecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theoret. Comput. Sci. 359, 378–399 (2006)

    Article  Google Scholar 

  12. Guillemot, S.: Approches combinatoires pour le consensus d’arbres et de séquences. Ph.D. thesis, Univ. Montpellier II, France (2008)

    Google Scholar 

  13. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In: RECOMB 2000, pp. 138–146. ACM Press, New York (2000)

    Google Scholar 

  14. Iwata, S., Orlin, J.B.: Simple combinatorial algorithm for submodular function minimization. In: SODA 2009, pp. 1230–1237. SIAM, Philadelphia (2009)

    Google Scholar 

  15. Hahn, M.W., Han, M.V., Han, S.-G.: Gene family evolution across 12 Drosophilia genomes. PLoS Genet. 3, e197 (2007)

    Google Scholar 

  16. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30, 729–752 (2000)

    Article  Google Scholar 

  17. Mak, W.-K.: Faster Min-Cut Computation in Unweighted Hypergraphs/Circuit Netlists. In: VLSI Design, Automation and Test, 2005 (VLSI-TSA-DAT), pp. 67–70. IEEE, Los Alamitos (2005)

    Google Scholar 

  18. Page, R.D.M.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 537–551. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Sanderson, M.J., McMahon, M.M.: Inferring angiosperm phylogeny from EST data with widespread gene duplication. BMC Evol. Biol. 7, S3 (2007)

    Google Scholar 

  20. Scornavacca, C., Berry, V., Ranwez, V.: From gene trees to species trees through a supertree approach. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 702–714. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Appl. Math. 105, 147–158 (2000)

    Article  Google Scholar 

  22. Stege, U.: Gene Trees and Species Trees: The Gene-Duplication Problem in Fixed-Parameter Tractable. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 288–293. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Wapinski, I., et al.: Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Li, H., et al.: Treefam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, 572–580 (2006)

    Article  Google Scholar 

  25. Wehe, A., et al.: DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 24, 1540–1541 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, X., Lin, Z., Ma, H.: Phylogenetic detection of numerous gene duplications shared by animals, fungi and plants Genome Biol., 11, R38 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ouangraoua, A., Swenson, K.M., Chauve, C. (2010). An Approximation Algorithm for Computing a Parsimonious First Speciation in the Gene Duplication Model. In: Tannier, E. (eds) Comparative Genomics. RECOMB-CG 2010. Lecture Notes in Computer Science(), vol 6398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16181-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16181-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16180-3

  • Online ISBN: 978-3-642-16181-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics