Skip to main content

The Computational Complexity of Trembling Hand Perfection and Other Equilibrium Refinements

  • Conference paper
Algorithmic Game Theory (SAGT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6386))

Included in the following conference series:

Abstract

The king of refinements of Nash equilibrium is trembling hand perfection. We show that it is NP-hard and Sqrt-Sum-hard to decide if a given pure strategy Nash equilibrium of a given three-player game in strategic form with integer payoffs is trembling hand perfect. Analogous results are shown for a number of other solution concepts, including proper equilibrium, (the strategy part of) sequential equilibrium, quasi-perfect equilibrium and CURB.

The proofs all use a reduction from the problem of comparing the minmax value of a three-player game in strategic form to a given rational number. This problem was previously shown to be NP-hard by Borgs et al., while a Sqrt-Sum hardness result is given in this paper. The latter proof yields bounds on the algebraic degree of the minmax value of a three-player game that may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, K., Weibull, J.W.: Strategy subsets closed under rational behavior. Economics Letters 2(36), 141–146 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of quantifier elimination. Journal of the ACM 43(6), 1002–1045 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benisch, M., Davis, G.B., Sandholm, T.: Algorithms for closed under rational behavior (CURB) sets. Journal of Artificial Intelligence Research (Forthcoming 2010)

    Google Scholar 

  4. Blume, L., Brandenburger, A., Dekel, E.: Lexicographic probabilities and equilibrium refinements. Econometrica 59, 81–98 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borgs, C., Chayes, J.T., Immorlica, N., Kalai, A.T., Mirrokni, V.S., Papadimitriou, C.H.: The myth of the folk theorem. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 365–372. ACM, New York (2008)

    Google Scholar 

  6. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 261–272 (2006)

    Google Scholar 

  7. Coste, M., Roy, M.: Thom’s lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets. Journal of Symbolic Computation 5(1-2), 121–129 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. van Damme, E.: A relation between perfect equilibria in extensive form games and proper equilibria in normal form games. International Journal of Game Theory 13, 1–13 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. van Damme, E.: Stability and Perfection of Nash Equlibria, 2nd edn. Springer, Heidelberg (1991)

    Book  MATH  Google Scholar 

  10. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: Procedings of the 38th Annual ACM Symposium on the Theory of Computing (STOC 2006), pp. 71–78 (2006)

    Google Scholar 

  11. Etessami, K., Lochbihler, A.: The computational complexity of evolutionarily stable strategies. International Journal of Game Theory 31(1), 93–113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Etessami, K., Yannakakis, M.: Recursive markov decision processes and recursive stochastic games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed points (extended abstract). In: Proc. 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 113–123 (2007)

    Google Scholar 

  14. Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete geometric problems. In: Proceedings of the 8th Annual ACM Symposium on Theory of Computing, STOC 1976, Hershey, PA, May 3-5, pp. 10–22. ACM Press, New York (1976)

    Google Scholar 

  15. Govindan, S., Klumpp, T.: Perfect equilibrium and lexicographic beliefs. International Journal of Game Theory 31(2), 229–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graham, R.L.: 10 - Problems and Solutions. In: P73: Euclidian Minimum Spanning Trees. Bulletin of the EATCS, vol. 24, pp. 205–206. EATCS (October 1984)

    Google Scholar 

  17. Hansen, K.A., Hansen, T.D., Miltersen, P.B., Sørensen, T.B.: Approximability and parameterized complexity of minmax values. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 684–695. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Hillas, J., Kohlberg, E.: Foundations of strategic equilibria. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory, ch. 42, vol. 3, pp. 1597–1663. Elsevier Science, Amsterdam (2002)

    Google Scholar 

  19. Kohlberg, E., Reny, P.J.: Independence on relative probability spaces and consistent assessments in game trees. Journal of Economic Theory 75(2), 280–313 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koller, D., Megiddo, N., von Stengel, B.: Efficient computation of equilibria for extensive form games. Games and Economic Behavior 14, 247–259 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kreps, D.M., Wilson, R.: Sequential equilibria. Econometrica 50(4), 863–894 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mertens, J.F.: Two examples of strategic equilibrium. Games and Economic Behavior 8, 378–388 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morandi, P.: Field and Galois Theory. Graduate Texts in Mathematics, vol. 167. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  24. Myerson, R.B.: Refinements of the Nash equilibrium concept. International Journal of Game Theory 15, 133–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Selten, R.: A reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory 4, 25–55 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hansen, K.A., Miltersen, P.B., Sørensen, T.B. (2010). The Computational Complexity of Trembling Hand Perfection and Other Equilibrium Refinements. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds) Algorithmic Game Theory. SAGT 2010. Lecture Notes in Computer Science, vol 6386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16170-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16170-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16169-8

  • Online ISBN: 978-3-642-16170-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics