Advertisement

Learning Terminologies in Probabilistic Description Logics

  • Kate Revoredo
  • José Eduardo Ochoa-Luna
  • Fabio Gagliardi Cozman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6404)

Abstract

This paper investigates learning methods where the target language is the recently proposed probabilistic description logic cr \(\mathcal{ALC}\). We start with an inductive logic programming algorithm that learns logical constructs; we then develop an algorithm that learns probabilistic constructs by searching for conditioning concepts, using examples given as interpretations. Issues on learning from entailments are also examined, and practical examples are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniou, G., van Harmelen, F.: Semantic Web Primer. MIT Press, Cambridge (2008)Google Scholar
  2. 2.
    Baader, F., Nutt, W.: Basic description logics. In: Description Logic Handbook, pp. 47–100. Cambridge University Press, Cambridge (2002)Google Scholar
  3. 3.
    Cozman, F.G., Polastro, R.B.: Loopy propagation in a probabilistic description logic. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 120–133. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Cozman, F.G., Polastro, R.B.: Complexity analysis and variational inference for interpretation-based probabilistic description logics. In: Conference on Uncertainty in Artificial Intelligence (2009)Google Scholar
  5. 5.
    De Raedt, L. (ed.): Advances in Inductive Logic Programming. IOS Press, Amsterdam (1996)zbMATHGoogle Scholar
  6. 6.
    De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95(1), 187–201 (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.): Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  8. 8.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal Royal Statistical Society B 44, 1–38 (1977)zbMATHGoogle Scholar
  9. 9.
    Fanizzi, N., D’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Heinsohn, J.: Probabilistic description logics. In: International Conf. on Uncertainty in Artificial Intelligence, pp. 311–318 (1994)Google Scholar
  11. 11.
    Jaeger, M.: Probabilistic reasoning in terminological logics. In: Principals of Knowledge Representation (KR), pp. 461–472 (1994)Google Scholar
  12. 12.
    Jaeger, M.: Relational bayesian networks: a survey. Linkoping Electronic Articles in Computer and Information Science 6 (2002)Google Scholar
  13. 13.
    Lehmann, J.: Hybrid learning of ontology classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Ochoa-Luna, J.E., Cozman, F.G.: An algorithm for learning with probabilistic description logics. In: 5th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW) at the 8th International Semantic Web Conference (ISWC), Chantilly, USA, pp. 63–74 (2009)Google Scholar
  15. 15.
    Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)Google Scholar
  16. 16.
    Sebastiani, F.: A probabilistic terminological logic for modelling information retrieval. In: ACM Conf. on Research and Development in Information Retrieval (SIGIR), pp. 122–130 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kate Revoredo
    • 1
  • José Eduardo Ochoa-Luna
    • 2
  • Fabio Gagliardi Cozman
    • 2
  1. 1.Departamento de Informática AplicadaUnirioRio de JaneiroBrazil
  2. 2.Escola PolitécnicaUniversidade de São PauloBrazil

Personalised recommendations