Advertisement

An Adaptive Genetic Algorithm to the Single Machine Scheduling Problem with Earliness and Tardiness Penalties

  • Fábio Fernandes Ribeiro
  • Marcone Jamilson Freitas Souza
  • Sérgio Ricardo de Souza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6404)

Abstract

This paper deals with the Single Machine Scheduling Problem with Earliness and Tardiness Penalties, considering distinct due windows and sequence-dependent setup time. Due to its complexity, an adaptive genetic algorithm is proposed for solving it. Many search operators are used to explore the solution space where the choice probability for each operator depends on the success in a previous search. The initial population is generated by the combination between construct methods based on greedy, random and GRASP techniques. For each job sequence generated, a polynomial time algorithm is used for determining the processing initial optimal date to each job. During the evaluation process, the best individuals produced are added to a special group, called elite group. The individuals of this group are submitted to refinement, aiming to improve their quality. Three variations of this algorithm are submitted to computational test. The results show the effectiveness of the proposed algorithm.

Keywords

Schedule Problem Local Search Setup Time Crossover Operator Good Individual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allahverdi, A., Ng, C., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. European Journal of Operational Research 187, 985–1032 (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Wan, G., Yen, B.P.C.: Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness penalties. European Journal of Operational Research 142, 271–281 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is np-hard. Mathematics of Operations Research 15, 483–495 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Lee, C.Y., Choi, J.Y.: A genetic algorithm for job sequencing problems with distinct due dates and general early-tardy penalty weights. Computers and Operations Research 22, 857–869 (1995)CrossRefzbMATHGoogle Scholar
  5. 5.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gomes Jr., A.C., Carvalho, C.R.V., Munhoz, P.L.A., Souza, M.J.F.: Um método heurístico híbrido para a resolução do problema de sequenciamento em uma máquina com penalidades por antecipação e atraso da produção. In: Anais do XXXIX Simpósio Brasileiro de Pesquisa Operacional - XXXIX SBPO, Fortaleza, Brazil, pp. 1649–1660 (2007)Google Scholar
  7. 7.
    Prais, M., Ribeiro, C.C.: An application to a matrix decomposition problem in tdma traffic assignmen. INFORMS - Journal on Computing 12, 164–176 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Liaw, C.F.: A branch-and-bound algorithm for the single machine earliness and tardiness scheduling problem. Computers and Operations Research 26, 679–693 (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Mazzini, R., Armentano, V.A.: A heuristic for single machine scheduling with early and tardy costs. European Journal of Operational Research 128, 129–146 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Rabadi, G., Mollaghasemi, M., Anagnostopoulos, G.C.: A branch-and-bound algorithm for the early/tardy machine scheduling problem with a common due-date and sequence-dependent setup time. Computers and Operations Research 31, 1727–1751 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Rosa, B.F., Souza, M.J.F., Souza, S.R.: Formulações de programação matemática para o problema de sequenciamento em uma máquina com janelas de entrega distintas e tempo de preparação dependentes da sequência de produção. In: Anais do XXXII Congresso Nacional de Matemática Aplicada e Computacional – CNMAC 2009, Cuiabá (2009)Google Scholar
  12. 12.
    Penna, P.H.V.: Um algoritmo heurístico híbrido para minimizar os custos com a antecipação e o atraso da produção em ambientes com janelas de entrega e tempos de preparação dependentes da sequência de produção. In: Dissertação de mestrado, Programa de Pós-Graduação em Engenharia Mineral, Escola de Minas, UFOP, Ouro Preto (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fábio Fernandes Ribeiro
    • 1
  • Marcone Jamilson Freitas Souza
    • 2
  • Sérgio Ricardo de Souza
    • 1
  1. 1.Programa de Pós-Graduação em Modelagem Matemática e ComputacionalCentro Federal de Educação Tecnológica de Minas Gerais - CEFET/MGMinas GeraisBrazil
  2. 2.Departamento de Computação, ICEBUniversidade Federal de Ouro Preto - UFOPMinas GeraisBrazil

Personalised recommendations