Guaranteed and Randomized Methods for Stability Analysis of Uncertain Metabolic Networks

Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 407)


A persistent problem hampering our understanding of the dynamics of large-scale metabolic networks is the lack of experimentally determined kinetic parameters that are necessary to build computational models of biochemical processes. To overcome some of the limitations imposed by absent or incomplete kinetic data, structural kinetic modeling (SKM) was proposed recently as an intermediate approach between stoichiometric analysis and a full kinetic description. SKM extends stationary flux-balance analysis (FBA) by a local stability analysis utilizing an appropriate parametrization of the Jacobian matrix. To characterize the Jacobian, we utilize results from robust control theory to determine subintervals of the Jacobian’ entries that correspond to asymptotically stable metabolic states. Furthermore, we propose an efficient sampling scheme in combination with methods from computational geometry to sketch the stability region. A glycolytic pathway model comprising 12 uncertain parameters is used to assess the feasibility of the method.


Convex Hull Metabolic Network Linear Matrix Inequality Expansion Point Quadratic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, J., Bartlett, A., Kaesbauer, D., Sienel, W., Steinhauser, W.: Robust Control: Systems with Uncertain Physical Parameters. Springer, New York (2001)Google Scholar
  2. 2.
    Apkarian, P., Tuan, H.D.: Parametrized LMIs in control theory. SIAM J. Control Optim. 38(4), 1241–1264 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms. Comput. Geom. Th. Appl. 7, 265–302 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barmish, B.R.: New Tools for Robustness of Linear Systems. Macmillan Publishing Company, Basingstoke (1994)zbMATHGoogle Scholar
  5. 5.
    Bialas, S.: A necessary and sufficient condition for the stability of convex combinations of stable polynomials or matrices. Bull. Pol. Acad. Sci. 33, 473–480 (1985)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)zbMATHGoogle Scholar
  7. 7.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  8. 8.
    Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental construction. Comput. Geom. 3(4), 185–212 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience Publication, Hoboken (2000)Google Scholar
  10. 10.
    Feist, A.M., Herrgard, M.J., Reed, J.L., Palsson, B.O.: Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7(2), 129–143 (2009)Google Scholar
  11. 11.
    Gahinet, P., Apkarian, P., Chilali, M.: Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Trans. Autom. Control 41(3), 436–442 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Heinrich, R., Schuster, S.: The regulation of cellular systems. Chapman Hall, New York (1996)zbMATHGoogle Scholar
  13. 13.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001)zbMATHGoogle Scholar
  14. 14.
    Kell, D.B.: Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7(3), 296–307 (2004)CrossRefGoogle Scholar
  15. 15.
    Kharitonov, V.L.: Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differential Equations 14, 1483–1485 (1979)zbMATHGoogle Scholar
  16. 16.
    Koeppl, H., Hafner, M., Steuer, R.: Semi-quantitative stability analysis constrains saturation levels in metabolic networks. In: Proc. Int. Workshop on Comput. Syst. Biol., Aarhus, Denmark, pp. 91–94 (2009)Google Scholar
  17. 17.
    Kruger, N.J., Ratcliffe, R.G.: Insights into plant metabolic networks from steady-state metabolic flux analysis. Biochimie 91(6), 697–702 (2009)CrossRefGoogle Scholar
  18. 18.
    Kuiper, B.J.: Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge. MIT Press, Cambridge (1994)Google Scholar
  19. 19.
    Marsaglia, G.: Choosing a point from the surface of a sphere. Ann. Math. Stat. 43, 645–646 (1985)CrossRefGoogle Scholar
  20. 20.
    Schaber, J., Liebermeister, W., Klipp, E.: Nested uncertainties in biochemical models. IET Syst. Biol. 3(1), 1–9 (2009)CrossRefGoogle Scholar
  21. 21.
    Steuer, R., Gross, T., Balsius, B.: Structural kinetic modeling of metabolic networks. Proc. Nat. Acad. Sci. U.S.A. 103(32), 11,868–11,873 (2006)CrossRefGoogle Scholar
  22. 22.
    Steuer, R., Junker, B.H.: Computational models of metabolism: Stability and regulation in metabolic networks. Adv. Chem. Phys. 142 (2009)Google Scholar
  23. 23.
    Wang, L., Hatzimanikatis, V.: Metabolic engineering under uncertainty. I: framework development. Metab. Eng. 8(2), 133–141 (2006)CrossRefGoogle Scholar
  24. 24.
    Zamboni, N., Sauer, U.: Novel biological insights through metabolomics and 13c-flux analysis. Curr. Opin. Microbiol. 12(5), 553–558 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratory of Nonlinear Systems, School of Communication and Computer SciencesEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Institute for Theoretical BiologyHumboldt University of BerlinBerlinGermany
  3. 3.Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK

Personalised recommendations