Advertisement

An Adjustable Transformation from OWL to Ecore

  • Tirdad Rahmani
  • Daniel Oberle
  • Marco Dahms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6395)

Abstract

Although there are sufficient similarities between the W3C Web Ontology Language OWL and the software modeling language Ecore, little research has been conducted into approaches which allow software engineers to incorporate existingWeb ontologies into their familiar Ecore-based software engineering environments. This is becoming important since the number of significant Web ontologies is growing and software engineers are increasingly challenged to build software relying on such ontologies. Therefore, we propose an automatic transformation between OWL and Ecore, that is adjustable between the two extremes of a result which is simple to understand, or a result, which preserves as much as possible of the source ontology. The transformation is realized as an Eclipse plug-in and, thus, integrates seamlessly with a software developer’s familiar environment.

Keywords

Object Property Modeling Primitive Source Ontology Property Hierarchy Datatype Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amstel, M.F., Lange, C.F., Brand, M.G.: Using metrics for assessing the quality of ASF+SDF model transformations. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 239–248. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bergmann, G., Horváth, Á., Ráth, I., Varró, D.: A benchmark evaluation of incremental pattern matching in graph transformation. In: Ehrig, H., Heckel, R., Rozenberg, G., Täntzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 396–410. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in bpmn. Inf. Softw. Technol. 50(12), 1281–1294 (2008)CrossRefGoogle Scholar
  4. 4.
    Dumas, M.: Case study: BPMN to BPEL model transformation. In: 5th International Workshop on Graph-Based Tools, Satellite Workshop to TOOLS 2009 (2009)Google Scholar
  5. 5.
    Eshuis, R.: Translating safe petri nets to statecharts in a structure-preserving way. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 239–255. Springer, Heidelberg (2009); Extended as Beta WP 282 at Eindhoven University of Technology CrossRefGoogle Scholar
  6. 6.
    Geiß, R., Kroll, M.: GrGen.net: A fast, expressive, and general purpose graph rewrite tool. In: Rensink, Täntzer (eds.) [14], pp. 568–569Google Scholar
  7. 7.
    Graef, J.: Managing taxonomies strategically. Montague Institute Review (2001)Google Scholar
  8. 8.
    Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: A ‘cognitive dimensions’ framework. Journal of Visual Languages and Computing 7(2), 131–174 (1996)CrossRefGoogle Scholar
  9. 9.
    Habel, A., Heckel, R., Täntzer, G.: Graph grammars with negative application conditions. Fundamenta Informaticae 26(3-4), 287–313 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Horváth, A., Bergmann, G., Ráth, I., Varró, D.: Experimental assessment of combining pattern matching strategies with VIATRA2. In: STTT (2010)Google Scholar
  12. 12.
    Mens, T., Van Gorp, P.: A taxonomy of model transformation. In: Karsai, G., Täntzer, G. (eds.) Proc. GraMoT 2005. ENTCS, vol. 152, pp. 125–142. Elsevier, Amsterdam (March 2005)Google Scholar
  13. 13.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  14. 14.
    Rensink, A., Täntzer, G. (eds.): AGTiVE 2007, Kassel, October 10-12. LNCS, vol. 5088. Springer, Heidelberg (2007) (Revised Selected and Invited Papers)Google Scholar
  15. 15.
    Russell, N., ter Hofstede, A., van der Aalst, W., Mulyar, N.: Workflow control-flow patterns: A revised view. Technical Report BPM-06-22, BPMcenter.org (2006)Google Scholar
  16. 16.
  17. 17.
    Van Gorp, P.: Model-driven Development of Model Transformations. PhD thesis, University of Antwerp (April 2008)Google Scholar
  18. 18.
    Van Gorp, P.: Online demo: PN2SC in Java and GrGen (2010), http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdiID=343
  19. 19.
    Van Gorp, P., Eshuis, R.: Transforming process models: executable rewrite rules versus a formalized java program. Technical Report Beta WP 315, Eindhoven University of Technology (2010)Google Scholar
  20. 20.
    Van Gorp, P., Mazanek, S., Rensink, A.: Transformation Tool Contest – Awards (2010), http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/?page=Awards
  21. 21.
    Varró, D., Asztalos, M., Bisztray, D., et al.: Transformation of UML models to CSP: A case study for graph transformation tools. In: Rensink, Täntzer (eds.) [14], pp. 540–565Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tirdad Rahmani
    • 1
  • Daniel Oberle
    • 1
  • Marco Dahms
    • 1
  1. 1.SAP Research, CEC KarlsruheKarlsruheGermany

Personalised recommendations