Foundations of Q-Physics

  • Lajos Diósi
Part of the Lecture Notes in Physics book series (LNP, volume 827)


We can see that multiplying the state vector by a complex phase factor yields the same density matrix, i.e., the same q-state. Hence the phase of the state vector can be deliberately altered, still the same pure q-state is obtained. In the conservative q-theory, contrary to the classical theory, not even the pure state is interpreted on a single system but on the statistical ensemble of identical systems


  1. 1.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)MATHGoogle Scholar
  2. 2.
    Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, K., Stamatescu, I.O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)Google Scholar
  3. 3.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: Phys. Rev. Lett. 60, 1351 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Diósi, L.: Weak measurements in quantum mechanics. In: Françoise, J.P., Naber, G.L., Tso, S.T. (eds) Encyclopedia of Mathematical Physics, vol. 4. Elsevier, Oxford pp. 276–282 (2006)CrossRefGoogle Scholar
  5. 5.
    Werner, R.F.: Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.MTA BudapestKFKI Research Institute for Particle and Nuclear Physics (RMKI)BudapestHungary

Personalised recommendations