Skip to main content

Data Mining Based on Intelligent Systems for Decision Support Systems in Healthcare

  • Chapter
Advanced Computational Intelligence Paradigms in Healthcare 5

Part of the book series: Studies in Computational Intelligence ((SCI,volume 326))

Abstract

In this paper we make an extensive study of Artificial Intelligence (AI) techniques that can be used in decision support systems in healthcare. In particular, we propose variants of ensemble methods (i.e., Rotation Forest and Input Decimated Ensembles) that are based on perturbing features, and we make a wide comparison among the ensemble approaches. We illustrate the power of these techniques by applying our approaches to different healthcare problems. Included in this chapter is extensive background material on the single classifier systems, ensemble methods, and feature transforms used in the experimental section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpaydin, E.: Introduction to machine learning. MIT Press, Cambridge, MA (2004)

    Google Scholar 

  2. Bologna, G., Appel, R.D.: A comparison study on protein fold recognition. In: The 9th Int. Conference on Neural Information Processing, Singapore, 2492–2496 (2002)

    Google Scholar 

  3. Breiman, L.: Bagging predictors, vol. 24(2), pp. 123–140 (1996)

    Google Scholar 

  4. Breiman, L.: Random forest, vol. 45(1), pp. 5–32 (2001)

    Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, New York (2000)

    Google Scholar 

  7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo, J., Lin, Y.: Tssub: Eukaryotic protein subcellar localization by extracting features from profiles, vol. 22, pp. 1784–1785 (2006)

    Google Scholar 

  9. Güvenir, H.A., Demiröz, G., Iter, N.: Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals, vol. 13, pp. 147–165 (1998)

    Google Scholar 

  10. Han, D., Bo, L., Sminchisescu, C.: Selection and context for action recognition, Xian, China (2009)

    Google Scholar 

  11. Ho, T.K.: The random subspace method for constructing decision forests, vol. 20(8), pp. 832–844 (1998)

    Google Scholar 

  12. Hyvärinen, A.: The fixed-point algorithm and miximum likelihood estimation for independent component analysis, vol. 10, pp. 1–5 (1999)

    Google Scholar 

  13. Kittler, J.: On combining classifiers, vol. 20(3), pp. 226–239 (1998)

    Google Scholar 

  14. Kuncheva, L.I.: Combining pattern classifiers: Methods and algorithms. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  15. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, vol. 51(2), pp. 181–207 (2003)

    Google Scholar 

  16. Lan, H., Carson, R., Provart, N., Bonner, A.: Combining classifiers to predict gene function in arabidopsis thaliana using large-scale gene expression measurements, vol. 8, p. 358 (2007)

    Google Scholar 

  17. Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2(2), 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  18. Liu, K., Huang, D.: Cancer classification using rotation forest, vol. 38(5), pp. 601–610 (2008)

    Google Scholar 

  19. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters, vol. 11, pp. 431–441 (1963)

    Google Scholar 

  20. Martínez-Muñoz, G., Suárez, A.: Switching class labels to generate classification ensembles, vol. 38(10), pp. 1483–1494 (2005)

    Google Scholar 

  21. Melville, P., Mooney, R.J.: Creating diversity in ensembles using artificial, information fusion, vol. 6(1), pp. 99–111 (2005)

    Google Scholar 

  22. Nanni, L.: Cluster-based pattern discrimination: A novel technique for feature selection, vol. 27(6), pp. 682–687 (2006)

    Google Scholar 

  23. Nanni, L., Lumini, A.: Fuzzybagging: A novel ensemble of classifiers, vol. 39(3), pp. 488–490 (2006)

    Google Scholar 

  24. Nanni, L., Lumini, A.: Mpps: An ensemble of support vector machines based on multiple physicochemical properties of amino-acids, vol. 69(13), pp. 1688–1690 (2006)

    Google Scholar 

  25. Nanni, L., Lumini, A.: Ensemblator: An ensemble of classifiers for reliable classification of biological data, vol. 28(5), pp. 622–630 (2007)

    Google Scholar 

  26. Nanni, L., Lumini, A.: Ensemble generation and feature selection for the identification of students with learning disabilities (accepted 2008)

    Google Scholar 

  27. Nanni, L., Lumini, A.: Using ensemble of classifiers in bioinformatics. In: Nanni, L., Lumini, A. (eds.) Machine learning research progress, Nova publishers, New York (2008) (accepted)

    Google Scholar 

  28. Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  29. Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.Y.H., Goumnerova, L.C., Black, P.M., Lau, C., Allen, J.C., Zagzag, D., Olson, J.M., Curran, T., Wetmore, C., Biegel, J.A., Poggio, T., Mukherjee, S., Rifkin, R., Califano, A., Stolovitzky, G., Louis, D.N., Mesirov, J.P., Lander, E.S., Golub, T.R.: Prediction of central nervous system embryonal tumour outcome based on gene expression, vol. 415(1), pp. 436–442 (2002)

    Google Scholar 

  30. Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Letters 5(11), 1119–1125 (1994)

    Article  Google Scholar 

  31. Ranawana, R., Palade, V.: A neural network based multiclassifier system for gene identification in DNA sequences, vol. 14, pp. 122–131 (2005)

    Google Scholar 

  32. Rasmussen, C.E., Williams, K.I.: Gaussian processes for machine learning. The MIT Press, Cambridge, MA (2006)

    MATH  Google Scholar 

  33. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: A new classifier ensemble method, vol. 28(10), pp. 1619–1630 (2006)

    Google Scholar 

  34. Russell, S., Norvig, P.: Artificial intelligence: A modern approach. Prentice Hall, Upper Saddle River, NJ (2002)

    Google Scholar 

  35. Tumer, K., Oza, N.C.: Input decimated ensembles, vol. 6, pp. 65–77 (2003)

    Google Scholar 

  36. Übeyli, E.D.: Combined neural networks for diagnosis of erythemato-squamous diseases (2008), doi:10.1016/j.eswa.2008.06.002

    Google Scholar 

  37. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)

    MATH  Google Scholar 

  38. Xiaofei, H., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood preserving embedding. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), Beijing, China (2005)

    Google Scholar 

  39. Yuan, Y., Shaw, M.J.: Introduction to fuzzy decision trees, vol. 69, pp. 125–139 (1995)

    Google Scholar 

  40. Zhang, C.-X., Zhang, J.-S.: Rotboost: A technique for combining rotation forest and adaboost, vol. 29(10), pp. 1524–1536 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nanni, L., Brahnam, S., Lumini, A., Barrier, T. (2010). Data Mining Based on Intelligent Systems for Decision Support Systems in Healthcare. In: Brahnam, S., Jain, L.C. (eds) Advanced Computational Intelligence Paradigms in Healthcare 5. Studies in Computational Intelligence, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16095-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16095-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16094-3

  • Online ISBN: 978-3-642-16095-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics