Data Mining Based on Intelligent Systems for Decision Support Systems in Healthcare

  • Loris Nanni
  • Sheryl Brahnam
  • Alessandra Lumini
  • Tonya Barrier
Part of the Studies in Computational Intelligence book series (SCI, volume 326)

Abstract

In this paper we make an extensive study of Artificial Intelligence (AI) techniques that can be used in decision support systems in healthcare. In particular, we propose variants of ensemble methods (i.e., Rotation Forest and Input Decimated Ensembles) that are based on perturbing features, and we make a wide comparison among the ensemble approaches. We illustrate the power of these techniques by applying our approaches to different healthcare problems. Included in this chapter is extensive background material on the single classifier systems, ensemble methods, and feature transforms used in the experimental section.

Keywords

rotation forest input decimated ensembles multiclassifier systems decision trees medical decision support systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpaydin, E.: Introduction to machine learning. MIT Press, Cambridge, MA (2004)Google Scholar
  2. 2.
    Bologna, G., Appel, R.D.: A comparison study on protein fold recognition. In: The 9th Int. Conference on Neural Information Processing, Singapore, 2492–2496 (2002)Google Scholar
  3. 3.
    Breiman, L.: Bagging predictors, vol. 24(2), pp. 123–140 (1996)Google Scholar
  4. 4.
    Breiman, L.: Random forest, vol. 45(1), pp. 5–32 (2001)Google Scholar
  5. 5.
    Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge, UK (2000)Google Scholar
  6. 6.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, New York (2000)Google Scholar
  7. 7.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Guo, J., Lin, Y.: Tssub: Eukaryotic protein subcellar localization by extracting features from profiles, vol. 22, pp. 1784–1785 (2006)Google Scholar
  9. 9.
    Güvenir, H.A., Demiröz, G., Iter, N.: Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals, vol. 13, pp. 147–165 (1998)Google Scholar
  10. 10.
    Han, D., Bo, L., Sminchisescu, C.: Selection and context for action recognition, Xian, China (2009)Google Scholar
  11. 11.
    Ho, T.K.: The random subspace method for constructing decision forests, vol. 20(8), pp. 832–844 (1998)Google Scholar
  12. 12.
    Hyvärinen, A.: The fixed-point algorithm and miximum likelihood estimation for independent component analysis, vol. 10, pp. 1–5 (1999)Google Scholar
  13. 13.
    Kittler, J.: On combining classifiers, vol. 20(3), pp. 226–239 (1998)Google Scholar
  14. 14.
    Kuncheva, L.I.: Combining pattern classifiers: Methods and algorithms. Wiley, New York (2004)CrossRefMATHGoogle Scholar
  15. 15.
    Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, vol. 51(2), pp. 181–207 (2003)Google Scholar
  16. 16.
    Lan, H., Carson, R., Provart, N., Bonner, A.: Combining classifiers to predict gene function in arabidopsis thaliana using large-scale gene expression measurements, vol. 8, p. 358 (2007)Google Scholar
  17. 17.
    Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2(2), 164–168 (1944)MathSciNetMATHGoogle Scholar
  18. 18.
    Liu, K., Huang, D.: Cancer classification using rotation forest, vol. 38(5), pp. 601–610 (2008)Google Scholar
  19. 19.
    Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters, vol. 11, pp. 431–441 (1963)Google Scholar
  20. 20.
    Martínez-Muñoz, G., Suárez, A.: Switching class labels to generate classification ensembles, vol. 38(10), pp. 1483–1494 (2005)Google Scholar
  21. 21.
    Melville, P., Mooney, R.J.: Creating diversity in ensembles using artificial, information fusion, vol. 6(1), pp. 99–111 (2005)Google Scholar
  22. 22.
    Nanni, L.: Cluster-based pattern discrimination: A novel technique for feature selection, vol. 27(6), pp. 682–687 (2006)Google Scholar
  23. 23.
    Nanni, L., Lumini, A.: Fuzzybagging: A novel ensemble of classifiers, vol. 39(3), pp. 488–490 (2006)Google Scholar
  24. 24.
    Nanni, L., Lumini, A.: Mpps: An ensemble of support vector machines based on multiple physicochemical properties of amino-acids, vol. 69(13), pp. 1688–1690 (2006)Google Scholar
  25. 25.
    Nanni, L., Lumini, A.: Ensemblator: An ensemble of classifiers for reliable classification of biological data, vol. 28(5), pp. 622–630 (2007)Google Scholar
  26. 26.
    Nanni, L., Lumini, A.: Ensemble generation and feature selection for the identification of students with learning disabilities (accepted 2008)Google Scholar
  27. 27.
    Nanni, L., Lumini, A.: Using ensemble of classifiers in bioinformatics. In: Nanni, L., Lumini, A. (eds.) Machine learning research progress, Nova publishers, New York (2008) (accepted)Google Scholar
  28. 28.
    Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)CrossRefMATHGoogle Scholar
  29. 29.
    Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.Y.H., Goumnerova, L.C., Black, P.M., Lau, C., Allen, J.C., Zagzag, D., Olson, J.M., Curran, T., Wetmore, C., Biegel, J.A., Poggio, T., Mukherjee, S., Rifkin, R., Califano, A., Stolovitzky, G., Louis, D.N., Mesirov, J.P., Lander, E.S., Golub, T.R.: Prediction of central nervous system embryonal tumour outcome based on gene expression, vol. 415(1), pp. 436–442 (2002)Google Scholar
  30. 30.
    Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Letters 5(11), 1119–1125 (1994)CrossRefGoogle Scholar
  31. 31.
    Ranawana, R., Palade, V.: A neural network based multiclassifier system for gene identification in DNA sequences, vol. 14, pp. 122–131 (2005)Google Scholar
  32. 32.
    Rasmussen, C.E., Williams, K.I.: Gaussian processes for machine learning. The MIT Press, Cambridge, MA (2006)MATHGoogle Scholar
  33. 33.
    Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: A new classifier ensemble method, vol. 28(10), pp. 1619–1630 (2006)Google Scholar
  34. 34.
    Russell, S., Norvig, P.: Artificial intelligence: A modern approach. Prentice Hall, Upper Saddle River, NJ (2002)Google Scholar
  35. 35.
    Tumer, K., Oza, N.C.: Input decimated ensembles, vol. 6, pp. 65–77 (2003)Google Scholar
  36. 36.
    Übeyli, E.D.: Combined neural networks for diagnosis of erythemato-squamous diseases (2008), doi:10.1016/j.eswa.2008.06.002Google Scholar
  37. 37.
    Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)MATHGoogle Scholar
  38. 38.
    Xiaofei, H., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood preserving embedding. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), Beijing, China (2005)Google Scholar
  39. 39.
    Yuan, Y., Shaw, M.J.: Introduction to fuzzy decision trees, vol. 69, pp. 125–139 (1995)Google Scholar
  40. 40.
    Zhang, C.-X., Zhang, J.-S.: Rotboost: A technique for combining rotation forest and adaboost, vol. 29(10), pp. 1524–1536 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Loris Nanni
    • 1
  • Sheryl Brahnam
    • 2
  • Alessandra Lumini
    • 1
  • Tonya Barrier
    • 2
  1. 1.DEIS, IEIIT—CNRUniversità di BolognaBolognaItaly
  2. 2.Computer Information SystemsMissouri State UniversitySpringfieldUSA

Personalised recommendations