Information Processing in Smart Grids and Consumption Dynamics

  • Mikhail Simonov
  • Riccardo Zich
  • Marco Mussetta
Part of the Studies in Computational Intelligence book series (SCI, volume 324)


This work suggests an effective approach for information management in smart power grids based on the introduction of a suitable theory of digital energy. It shows a possible way to effectively manage energy dynamics in real life systems in real time. Power grids hold real time information flows already, but the control systems currently adopted use other information sources. We discuss the use of the information and semantic technologies in order to balance the loads in storage-less electric energy domain, and the changes brought by Future Internet and its entities.


information retrieval distributed information processing smart grid digitized energy electric web electric engineering load management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burke, J.J.: Power Distribution Engineering. Marcel Dekker, Inc., New York (1994)Google Scholar
  2. 2.
    Fan, J., Borlase, S.: The evolution of distribution, Power and Energy Magazine. IEEE 7(2), 63–68 (2009)Google Scholar
  3. 3.
    European Commission, European SmartGrids Technology Plaform: Vision for Europe’s Electricity Networks of the Future, EUR 22040, EC (2006)Google Scholar
  4. 4.
    Qiang, Z., Danyan, C.: Design and Implementation of Distribution Network SCADA System Based on J2EE Framework. In: International Forum on Information Technology and Applications, IFITA 2009, vol. 1, pp. 633–636 (2009)Google Scholar
  5. 5.
    Hirodontis, S., Li, H., Crossley, P.A.: Load shedding in a distribution network. In: Intl. Conference on Sustainable Power Generation and Supply (SUPERGEN 2009), pp. 1–6 (2009)Google Scholar
  6. 6.
    Phadke, A.G., De Moraes, R.M.: The Wide World of Wide-area Measurement. IEEE Power and Energy Magazine 6(5), 52–65 (2008)CrossRefGoogle Scholar
  7. 7.
    Thorp, J.S., Phadke, A.G.: Protecting power systems in the post-restructuring era. IEEE Computer Applications in Power 12(1), 33–37 (1999)CrossRefGoogle Scholar
  8. 8.
    Thorp, J.S., Phadke, A.G.: IEEE Guide for the Application of Protective Relays Used for Abnormal Frequency Load Shedding and Restoration, IEEE Std C37.117-2007 (2007)Google Scholar
  9. 9.
    Delfino, B., Massucco, S., Morini, A., Scalera, P., Silvestro, F.: Implementation and comparison of different under frequency load-shedding schemes. IEEE Power Engineering Society Summer Meeting 1, 307–312 (2001)Google Scholar
  10. 10.
    Delfino, B., Massucco, S., Morini, A., Scalera, P., Silvestro, F.: IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE Std 1159-2009 (Revision of IEEE Std 1159-1995) (2009)Google Scholar
  11. 11.
    Simonov, M., Mussetta, M., Zich, R.E.: Digital energy: clustering microgrids for social networking. International Journal of Virtual Communities and Social Networking 1(3), 75–93 (2009)Google Scholar
  12. 12.
    Derbel, F.: Trends in smart metering. In: 6th International Multi-Conference on Systems, Signals and Devices, SSD 2009, pp. 1–4 (2009)Google Scholar
  13. 13.
    Singh, T., Vara, P.K.: Smart Metering the Clouds. In: IEEE Int. Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises, WETICE 2009, pp. 66–71 (2009)Google Scholar
  14. 14.
    Rogai, S.: Telegestore Project Progresses And Results. In: IEEE International Symposium on Power Line Communications and Its Applications, ISPLC 2007, p. 1 (2007)Google Scholar
  15. 15.
    Rusitschka, S., Gerdes, C., Eger, K.: A low-cost alternative to smart metering infrastructure based on peer-to-peer technologies. In: 6th International Conference on the European Energy Market, EEM 2009, pp. 1–6 (2009)Google Scholar
  16. 16.
    De La Ree, J., Liu, Y., Mili, L., Phadke, A.G., DaSilva, L.: Catastrophic Failures in Power Systems: Causes, Analyses, and Countermeasures. Proc. of the IEEE 93(5), 956–964 (2005)CrossRefGoogle Scholar
  17. 17.
    Rocha Luis, M.: Complex Systems Modeling: Using Metaphors From Nature in Simulation and Scientific Models. In: BITS: Computer and Communications News. Computing, Information, and Communications Division, Los Alamos National Laboratory (1999)Google Scholar
  18. 18.
    Xinqing, L., Tsoukalas, L.H., Uhrig, R.E.: A neurofuzzy approach for the anticipatory control of complex systems. In: 5th IEEE Int.Conf. on Fuzzy Sys. proc., vol. 1, pp. 587–593 (1996)Google Scholar
  19. 19.
    Tolbert, L.M., Qi, H., Peng, F.Z.: Scalable multi-agent system for real-time electric power management. IEEE Power Eng. Society Summer Meeting 3, 1676–1679 (2001)Google Scholar
  20. 20.
    Adamiak, M.G., Apostolov, A.P., Begovic, M.M., Henville, C.F., Martin, K.E., Michel, G.L., Phadke, A.G., Thorp, J.S.: Wide Area Protection - Technology and Infrastructures. IEEE Trans. on Power Delivery 21(2), 601–609 (2006)CrossRefGoogle Scholar
  21. 21.
    Phadke, A.G., Thorp, J.S.: Synchronized Phasor Measurements and Their Applications. Springer, N. Y. (2008)Google Scholar
  22. 22.
    Heydt, G.T., Liu, C.C., Phadke, A.G., Vittal, V.: Solution for the crisis in electric power supply. IEEE Computer Applications in Power 14(3), 22–30 (2001)CrossRefGoogle Scholar
  23. 23.
    Tsoukalas, L.H., Gao, R.: From smart grids to an energy internet: Assumptions, architectures and requirements. In: Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, DRPT 2008, pp. 94–98 (2008)Google Scholar
  24. 24.
    Liu, G., Wei, H.L., Wang, X., Peng, W.: Research on Data Interoperability Based on Clustering Analysis in Data Grid. In: International Conference on Interoperability for Enterprise Software and Applications, IESA 2009, pp. 97–103 (2009)Google Scholar
  25. 25.
    Coppola, M., Pesciullesi, P., Ravazzolo, R., Zoccolo, C.: A Parallel Knowledge Discovery System for Customer Profiling. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 381–390. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Horowitz, S.H., Phadke, A.G.: Blackouts and relaying considerations - Relaying philosophies and the future of relay systems. IEEE Power and Energy Magazine 4(5), 60–67 (2006)CrossRefGoogle Scholar
  27. 27.
    Phadke, A.G., Kasztenny, B.: Synchronized Phasor and Frequency Measurement Under Transient Conditions. IEEE Trans. on Power Delivery 24(1), 89–95 (2009)CrossRefGoogle Scholar
  28. 28.
    Aisa, V., Falcioni, P., Pracchi, P.: Connecting white goods to a home network at a very low cost. In: International Appliance Manufacturing, pp. 85–91 (2004)Google Scholar
  29. 29.
    Adams, C.E.: Home Area Network Technologies. BT Technology Journal 20(2), 53–72 (2002)CrossRefGoogle Scholar
  30. 30.
    Ma, L., Zhang, Q., Wang, K., Li, X., Wang, H.: Semantic Load Shedding over Real-Time Data Streams. In: International Symposium on Computational Intelligence and Design, ISCID 2008, vol. 1, pp. 465–468 (2008)Google Scholar
  31. 31.
    Dey, A.K., Anind, K.: Understanding and Using Context. Personal Ubiquitous Computing 5(1), 4–7 (2001)CrossRefGoogle Scholar
  32. 32.
    Ma, L., Li, X., Wang, Y., Wang, H.A.: An Approach to Handle Overload in Real-Time Data Stream Management System. In: Fifth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2008, vol. 3, pp. 3–8 (2008)Google Scholar
  33. 33.
    Uslar, M.: Semantic Interoperability within the Power Systems Domain. In: Proc. of the ACM Conference on Information and Knowledge Management, CIKM 2005, pp. 39–45 (2005)Google Scholar
  34. 34.
    Robinson, G.: Key Standards for Utility Enterprise Application Integration (EAI). In: Proc. of the Distributech 2002, Miami, Pennwell (2002)Google Scholar
  35. 35.
    Uslar, M., Rohjans, S., Schulte, S., Steinmetz, R.: Building the Semantic Utility with Standards and Semantic Web Services. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2008. LNCS, vol. 5333, pp. 1026–1035. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  36. 36.
    Schulte, S., Eckert, J., Repp, N., Steinmetz, R.: An Approach to Evaluate and Enhance the Retrieval of Semantic Web Services. In: 5th ICSSSM Conf. 2008, pp. 1–7 (2008)Google Scholar
  37. 37.
    Brooks, A.: Integration of electric drive vehicles with the power grid-a new application for vehicle batteries. In: The 17th Annual Battery Conf. on Appl. and Advances, p. 239 (2002)Google Scholar
  38. 38.
    Pecas-Lopes, J.A., Rocha-Almeida, P.M., Soares, F.J.: Using vehicle-to-grid to maximize the integration of intermittent renewable energy resources in islanded electric grids. In: International Conference on Clean Electrical Power, pp. 290–295 (2009)Google Scholar
  39. 39.
    Park, C.E., Lee, Y.H., Kim, D.J., Lee, S.C., Moon, U.C.: An Inference Technique based on Semantic Primitives for the Development of Intelligent Load Distribution Systems. In: Int. Conf. on Power System Technology, pp. 1–5 (2006)Google Scholar
  40. 40.
    Sammartino, L., Simonov, M., Soroldoni, M., Tettamanzi, A.: GAMUT: A system for customer modeling based on evolutionary algorithms. In: GECCO 2000, p. 758 (2000)Google Scholar
  41. 41.
    Simonov, M., Mussetta, M., Pirisi, A., Grimaccia, F., Caputo, D., Zich, R.: Real time energy management in smart cities by Future Internet. In: Tselentis, G., et al. (eds.) Towards the Future Internet – A European Research Perspective, IOS Press, Amsterdam (2010)Google Scholar
  42. 42.
    Electrex, Femto D4 RS485 Data Sheet (2009),
  43. 43.
    Crnila, D.: ComPort Library,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mikhail Simonov
    • 1
    • 2
  • Riccardo Zich
    • 1
  • Marco Mussetta
    • 1
    • 3
  1. 1.Dipartimento di EnergiaPolitecnico di MilanoMilanoItaly
  2. 2.ISMBTorinoItaly
  3. 3.Dipartimento di ElettronicaPolitecnico di TorinoTorinoItaly

Personalised recommendations