Multimodal Aggregation and Recommendation Technologies Applied to Informative Content Distribution and Retrieval

  • Alberto Messina
  • Maurizio Montagnuolo
Part of the Studies in Computational Intelligence book series (SCI, volume 324)

Abstract

In the modern age, cross-media production is an innovative technique used by the media industry to ensure a positive return on investments while optimising productivity and market coverage. So that, technologies for the seamless fusion of heterogeneous data streams are increasingly considered important, and thus research efforts have started to explore this area. After having aggregated heterogeneous sources, what has to be addressed as the next problem is efficiency in retrieving and using the produced content. Tools for personalised and context-oriented multimedia retrieval are indispensable to access desired content from the aggregated data in a quicker and more useful way. This chapter describes the problems connected with this scenario and proposes an innovative technological framework to solve them, in the area of informative content (news) distribution and retrieval. Extensive experiments prove the effectiveness of this approach in a real-world business context.

Keywords

News Story Mean Average Precision Information Item Original Query Topic Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, J.W., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open user profiles for adaptive news systems: help or harm? In: Proc. of World Wide Web Conference, pp. 11–20 (2007)Google Scholar
  2. 2.
    Bertini, M., Del Bimbo, A., Torniai, C.: Automatic annotation and semantic retrieval of video sequences using multimedia ontologies. In: Proc. of the 14th annual ACM Intl. Conf. on Multimedia, pp. 679–682 (2006)Google Scholar
  3. 3.
    Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: Proc. of World Wide Web Conference, pp. 271–280 (2007)Google Scholar
  4. 4.
    Deschacht, K., Moens, M.F.: Finding the Best Picture: Cross-Media Retrieval of Content. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 539–546. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Di Iulio, M., Messina, A.: Use of Probabilistic Clusters Supports for Broadcast News Segmentation. In: DEXA Workshops, pp. 600–604 (2008)Google Scholar
  6. 6.
    Farrús, M., Ejarque, P., Temko, A., Hernando, J.: Histogram equalization in svm multimodal person verification. In: Intl. Conf. on Advances in Biometrics, pp. 819–827 (2007)Google Scholar
  7. 7.
    Gao, Y., Fan, J.: Incorporating concept ontology to enable probabilistic concept reasoning for multi-level image annotation. In: Proc. of the 8th ACM Intl. Workshop on Multimedia Information Retrieval, pp. 79–88 (2006)Google Scholar
  8. 8.
    Hanjalic, A.: Content-Based Analysis of Digital Video. Kluwer Academic Publishers, Dordrecht (2004)MATHGoogle Scholar
  9. 9.
    Hoashi, K.: Shot boundary determination on MPEG compressed domain and story segmentation experiments for TRECVID 2004. In: Proc. of TRECVID Workshop 2004 (2004)Google Scholar
  10. 10.
    Kashyap, V., Sheth, A.: Semantic and schematic similarities between database objects: a context-based approach. The VLDB Journal 5(4), 276–304 (1996)CrossRefGoogle Scholar
  11. 11.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: State of the art and challenges. ACM Transactions on Multimedia Computing, Communications and Applications 2(1), 1–19 (2006)CrossRefGoogle Scholar
  12. 12.
    Messina, A., Bailer, W., Schallauer, P., Tablan, V., et al.: Content analysis tools. Deliverable 15.4, PrestoSpace Consortium (February 2007)Google Scholar
  13. 13.
    Messina, A., Borgotallo, R., Dimino, G., Gnota, D.A., Boch, L.: Ants: A complete system for automatic news programme annotation based on multimodal analysis. In: Intl. Workshop on Image Analysis for Multimedia Interactive Services (2008)Google Scholar
  14. 14.
    Messina, A., Montagnuolo, M.: A generalised cross-modal clustering method applied to multimedia news semantic indexing and retrieval. In: Proc. of WWWW Conf. (2009)Google Scholar
  15. 15.
    Montagnuolo, M., Ferri, M., Messina, A.: HMNews: an integrated system for searching and browsing hypermedia news content. In: Hypertext, pp. 83–88 (2009)Google Scholar
  16. 16.
    Quénot, G.M., Mararu, D., Ayache, S., Charhad, M., Besacier, L.: CLIPS-LIS-LSR-LABRI experiments at TRECVID 2004. In: Proc. of TRECVID Workshop 2004 (2004)Google Scholar
  17. 17.
    Vinciarelli, A., Fernandez, F., Favre, S.: Semantic segmentation of radio programs using social network analysis and duration distribution modeling. In: Proc. of IEEE Intl. Conf. of Multimedia and Expo., pp. 779–782 (2007)Google Scholar
  18. 18.
    Volkmer, T., Tahahoghi, S.M.M., Williams, H.E.: RMIT university at TRECVID 2004. In: Proc. of TRECVID Workshop 2004 (2004)Google Scholar
  19. 19.
    Webster, D., Huang, W., Mundy, D., Warren, P.: Context-orientated news filtering for web 2.0 and beyond. In: Proc. of World Wide Web Conference, pp. 1001–1002 (2006)Google Scholar
  20. 20.
    Weng, C.Y., Chu, W.T., Wu, J.L.: Movie analysis based on roles’ social network. In: Proc. of IEEE Intl. Conf. of Multimedia and Expo., pp. 1403–1406 (2007)Google Scholar
  21. 21.
    Xu, C., Wang, J., Lu, H., Zhang, Y.: A novel framework for semantic annotation and personalized retrieval of sports video. IEEE Trans. on Multimedia 10(3), 421–436 (2008)CrossRefGoogle Scholar
  22. 22.
    Zhai, Y., Chao, X., Zhang, Y., Javed, O., Yilmaz, A., Rafi, F.: University of Central Florida at trecvid 2004. In: Proc. of TRECVID Workshop 2004 (2004)Google Scholar
  23. 23.
    Zhang, Y., Xu, C., Rui, Y., Wang, J., Lu, H.: Semantic event extraction from basketball games using multi-modal analysis. In: IEEE ICME 2007, pp. 2190–2193 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alberto Messina
    • 1
  • Maurizio Montagnuolo
    • 1
  1. 1.RAI Centre for Research and Technological InnovationTorinoItaly

Personalised recommendations