State-of-the-Art in Group Recommendation and New Approaches for Automatic Identification of Groups

  • Ludovico Boratto
  • Salvatore Carta
Part of the Studies in Computational Intelligence book series (SCI, volume 324)


Recommender systems are important tools that provide information items to users, by adapting to their characteristics and preferences. Usually items are recommended to individuals, but there are contexts in which people operate in groups. To support the recommendation process in social activities, group recommender systems were developed. Since different types of groups exist, group recommendation should adapt to them, managing heterogeneity of groups. This chapter will present a survey of the state-of-the-art in group recommendation, focusing on the type of group each system aims to. A new approach for group recommendation is also presented, able to adapt to technological constraints (e.g., bandwidth limitations), by automatically identifying groups of users with similar interests.


Root Mean Square Error Recommender System Community Detection Collaborative Filter Technological Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amer-Yahia, S., Roy, S.B., Chawla, A., Das, G., Yu, C.: Group recommendation: Semantics and efficiency. PVLDB 2(1), 754–765 (2009)Google Scholar
  2. 2.
    Ardissono, L., Goy, A., Petrone, G., Segnan, M.: A multi-agent infrastructure for developing personalized web-based systems. ACM Trans. Internet Technol. 5(1), 47–69 (2005)CrossRefGoogle Scholar
  3. 3.
    Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P.: Intrigue: Personalized recommendation of tourist attractions for desktop and handset devices. Applied Artificial Intelligence 17(8), 687–714 (2003)CrossRefGoogle Scholar
  4. 4.
    Baccigalupo, C., Plaza, E.: A case-based song scheduler for group customised radio. In: Weber and Richter [55], pp. 433–448Google Scholar
  5. 5.
    Baskin, J.P., Krishnamurthi, S.: Preference aggregation in group recommender systems for committee decision-making. In: Bergman, et al. [6], pp. 337–340Google Scholar
  6. 6.
    Bergman, L.D., Tuzhilin, A., Burke, R.D., Felfernig, A., Schmidt-Thieme, L. (eds.): Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009, October 23-25. ACM, New York (2009)Google Scholar
  7. 7.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. (10), P10008+ (2008)Google Scholar
  8. 8.
    Boratto, L., Carta, S., Chessa, A., Agelli, M., Clemente, M.L.: Group recommendation with automatic identification of users communities. In: Web Intelligence/IAT Workshops, pp. 547–550. IEEE, Los Alamitos (2009)Google Scholar
  9. 9.
    Briggs, P., Smyth, B.: Modeling trust in collaborative web search. In: AICS, Coleraine, NI (2005)Google Scholar
  10. 10.
    Cantador, I., Castells, P., Superior, E.P.: Extracting multilayered semantic communities of interest from ontology-based user profiles: Application to group modelling and hybrid recommendations. In: Computers in Human Behavior, special issue on Advances of Knowledge Management and the Semantic. Elsevier, Amsterdam (2008) (in press)Google Scholar
  11. 11.
    De Carolis, B., Pizzutilo, S.: Providing relevant background information in smart environments. In: Noia and Buccafurri [43], pp. 360–371Google Scholar
  12. 12.
    Carta, S., Alimonda, A., Clemente, M.L., Agelli, M.: Glue: Improving tag-based contents retrieval exploiting implicit user feedback. In: Hoenkamp, E., de Cock, M., Hoste, V. (eds.) Proceedings of the 8th Dutch-Belgian Information Retrieval Workshop (DIR 2008), pp. 29–35 (2008)Google Scholar
  13. 13.
    Chao, D.L., Balthrop, J., Forrest, S.: Adaptive radio: achieving consensus using negative preferences. In: Pendergast, M., Schmidt, K., Mark, G., Ackerman, M. (eds.) GROUP, pp. 120–123. ACM, New York (2005)Google Scholar
  14. 14.
    Chen, Y.-L., Cheng, L.-C., Chuang, C.-N.: A group recommendation system with consideration of interactions among group members. Expert Syst. Appl. 34(3), 2082–2090 (2008)CrossRefGoogle Scholar
  15. 15.
    Clemente, M.L.: Experimental results on item-based algorithms for independent domain collaborative filtering. In: AXMEDIS 2008: Proceedings of the 2008 International Conference on Automated solutions for Cross Media Content and Multi-channel Distribution, Washington, DC, USA, pp. 87–92. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  16. 16.
    Coyle, M., Smyth, B.: Explaining search results. In: Kaelbling and Saffiotti [30], pp. 1553–1555Google Scholar
  17. 17.
    Crossen, A., Budzik, J., Hammond, K.J.: Flytrap: intelligent group music recommendation. In: IUI, pp. 184–185 (2002)Google Scholar
  18. 18.
    de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Rueda-Morales, M.A.: Group recommending: A methodological approach based on bayesian networks. In: ICDE Workshops, pp. 835–844. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  19. 19.
    de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Rueda-Morales, M.A.: Managing uncertainty in group recommending processes. User Model. User-Adapt. Interact. 19(3), 207–242 (2009)CrossRefGoogle Scholar
  20. 20.
    Dietz, P.H., Leigh, D.: Diamondtouch: a multi-user touch technology. In: UIST, pp. 219–226 (2001)Google Scholar
  21. 21.
    Fortunato, S., Castellano, C.: Community structure in graphs. Springer’s Encyclopedia of Complexity and System Science (December 2007)Google Scholar
  22. 22.
    Freyne, J., Smyth, B.: Cooperating search communities. In: Wade, V.P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 101–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Garcia, I., Sebastia, L., Onaindia, E., Guzman, C.: A group recommender system for tourist activities. In: Noia and Buccafurri [43], pp. 26–37Google Scholar
  24. 24.
    Gfeller, D., Chappelier, J.C., Los, D.: Finding instabilities in the community structure of complex networks. Physical Review E 72(5 Pt 2), 056135+ (2005)CrossRefGoogle Scholar
  25. 25.
    Goren-Bar, D., Glinansky, O.: Fit-recommend ing tv programs to family members. Computers & Graphics 28(2), 149–156 (2004)CrossRefGoogle Scholar
  26. 26.
    Jameson, A.: More than the sum of its members: Challenges for group recommender systems. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, Gallipoli, Italy, pp. 48–54 (2004),
  27. 27.
    Jameson, A., Baldes, S., Kleinbauer, T.: Enhancing mutual awareness in group recommender systems. In: Mobasher, B., Anand, S.S. (eds.) Proceedings of the IJCAI 2003 Workshop on Intelligent Techniques for Web Personalization. AAAI, Menlo Park (2003), Google Scholar
  28. 28.
    Jameson, A., Baldes, S., Kleinbauer, T.: Two methods for enhancing mutual awareness in a group recommender system. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, Gallipoli, Italy (2004) (in press)Google Scholar
  29. 29.
    Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Kaelbling, L.P., Saffiotti, A. (eds.): IJCAI 2005, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK. Professional Book Center (July 30-August 5, 2005)Google Scholar
  31. 31.
    Kim, J.K., Kim, H.K., Oh, H.Y., Ryu, Y.U.: A group recommendation system for online communities. International Journal of Information Management (2009) (in press, corrected proof)Google Scholar
  32. 32.
    Lieberman, H., Van Dyke, N.W., Vivacqua, A.S.: Let’s browse: A collaborative web browsing agent. In: IUI, pp. 65–68 (1999)Google Scholar
  33. 33.
    Lorenzi, F., Santos, F., Ferreira Jr., P.R., Bazzan, A.L.: Optimizing preferences within groups: A case study on travel recommendation. In: Zaverucha, G., da Costa, A.L. (eds.) SBIA 2008. LNCS (LNAI), vol. 5249, pp. 103–112. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    McCarthy, J.F.: Pocket restaurantfinder: A situated recommender system for groups. In: Workshop on Mobile Ad-Hoc Communication at the 2002 ACM Conference on Human Factors in Computer Systems, Minneapolis (2002)Google Scholar
  35. 35.
    McCarthy, J.F., Anagnost, T.D.: Musicfx: an arbiter of group preferences for computer supported collaborative workouts. In: CSCW, p. 348 (2000)Google Scholar
  36. 36.
    McCarthy, K., McGinty, L., Smyth, B.: Case-based group recommendation: Compromising for success. In: Weber and Richter [55], pp. 299–313Google Scholar
  37. 37.
    McCarthy, K., McGinty, L., Smyth, B., Salamó, M.: The needs of the many: A case-based group recommender system. In: Roth-Berghofer, T., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 196–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  38. 38.
    Mccarthy, K., Mcginty, L., Smyth, B., Salamo, M.: Social interaction in the cats group recommender. In: Brusilovsky, P., Dron, J., Kurhila, J. (eds.) Workshop on the Social Navigation and Community-Based Adaptation Technologies at the 4th International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (June 2006)Google Scholar
  39. 39.
    McCarthy, K., Salamó, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Cats: A synchronous approach to collaborative group recommendation. In: Sutcliffe, G., Goebel, R. (eds.) FLAIRS Conference, pp. 86–91. AAAI Press, Menlo Park (2006)Google Scholar
  40. 40.
    McCarthy, K., Salamó, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender systems: a critiquing based approach. In: Paris, C., Sidner, C.L. (eds.) IUI, pp. 267–269. ACM, New York (2006)Google Scholar
  41. 41.
    Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 69(2 Pt 2) (February 2004)Google Scholar
  42. 42.
    Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70(5), 56131 (2004)CrossRefGoogle Scholar
  43. 43.
    Di Noia, T., Buccafurri, F. (eds.): E-Commerce and Web Technologies. LNCS, vol. 5692. Springer, Heidelberg (2009)Google Scholar
  44. 44.
    O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: Polylens: a recommender system for groups of users. In: ECSCW 2001: Proceedings of the seventh Conference on European Conference on Computer Supported Cooperative Work, Norwell, MA, USA, pp. 199–218. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  45. 45.
    O’Hara, K., Lipson, M., Jansen, M., Unger, A., Jeffries, H., Macer, P.: Jukola: democratic music choice in a public space. In: DIS 2004: Proceedings of the 5th Conference on Designing Interactive Systems, pp. 145–154. ACM, New York (2004)CrossRefGoogle Scholar
  46. 46.
    Pizzutilo, S., De Carolis, B., Cozzolongo, G., Ambruoso, F.: Group modeling in a public space: methods, techniques, experiences. In: AIC 2005: Proceedings of the 5th WSEAS International Conference on Applied Informatics and Communications, Stevens Point, Wisconsin, USA, pp. 175–180. World Scientific and Engineering Academy and Society, WSEAS (2005)Google Scholar
  47. 47.
    Recio-García, J.A., Jiménez-Díaz, G., Sánchez-Ruiz-Granados, A.A., Díaz-Agudo, B.: Personality aware recommendations to groups. In: Bergman et al. [6], pp. 325–328Google Scholar
  48. 48.
    Sharon, T., Lieberman, H., Selker, T.: A zero-input interface for leveraging group experience in web browsing. In: IUI, pp. 290–292. ACM, New York (2003)Google Scholar
  49. 49.
    Smyth, B., Freyne, J., Coyle, M., Briggs, P., Balfe, E.: I-SPY: Anonymous, Community-Based Personalization by Collaborative Web Search. In: Proceedings of the 23rd SGAI International Conference on Innovative Techniques, pp. 367–380. Springer, Cambridge (2003)Google Scholar
  50. 50.
    Smyth, B., Balfe, E.: Anonymous personalization in collaborative web search. Inf. Retr. 9(2), 165–190 (2006)CrossRefGoogle Scholar
  51. 51.
    Smyth, B., Balfe, E., Boydell, O., Bradley, K., Briggs, P., Coyle, M., Freyne, J.: A live-user evaluation of collaborative web search. In: Kaelbling and Saffiotti [30], pp. 1419–1424Google Scholar
  52. 52.
    Smyth, B., Balfe, E., Briggs, P., Coyle, M., Freyne, J.: Collaborative web search. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 1417–1419. Morgan Kaufmann, San Francisco (2003)Google Scholar
  53. 53.
    Sprague, D., Wu, F., Tory, M.: Music selection using the partyvote democratic jukebox. In: AVI 2008: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 433–436. ACM, New York (2008)CrossRefGoogle Scholar
  54. 54.
    Vildjiounaite, E., Kyllönen, V., Hannula, T., Alahuhta, P.: Unobtrusive dynamic modelling of tv programme preferences in a finnish household. Multimedia Syst. 15(3), 143–157 (2009)CrossRefGoogle Scholar
  55. 55.
    Weber, R., Richter, M.M. (eds.): ICCBR 2007. LNCS (LNAI), vol. 4626. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  56. 56.
    Yu, Z., Zhou, X., Hao, Y., Gu, J.: Tv program recommendation for multiple viewers based on user profile merging. User Model. User-Adapt. Interact. 16(1), 63–82 (2006)CrossRefGoogle Scholar
  57. 57.
    Zhiwen, Y., Xingshe, Z., Daqing, Z.: An adaptive in-vehicle multimedia recommender for group users. In: 2005 IEEE 61st Vehicular Technology Conference on VTC 2005-Spring, vol. 5, pp. 2800–2804 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ludovico Boratto
    • 1
  • Salvatore Carta
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly

Personalised recommendations