Advertisement

A Cognitive Approach to Negotiation

  • Alberto de la Encina
  • Mercedes Hidalgo-Herrero
  • Natalia López
Part of the Studies in Computational Intelligence book series (SCI, volume 323)

Abstract

Cognitive systems often require abilities to perform negotiations to exchange resources among different entities. Unfortunately, providing a general framework to allow specifying such abilities is not a trivial task. In this chapter we present an approach to allow specifying how agents can exchange resources in a multi-agent system. The exchanges are performed taking into account the utility functions of each of the agents. Moreover, the resources available in the system are not restricted to material goods. That is, intangible goods (like information) can also be handled in our environment. In addition to that, we also analyze how to infer the utility functions associated to each agent.

Keywords

Utility Function Multiagent System Shipping Cost Operational Semantic Intangible Asset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. North Holland, Amsterdam (2001)MATHGoogle Scholar
  2. 2.
    Dastani, M., Jacobs, N., Jonker, C.M., Treur, J.: Modelling user preferences and mediating agents in electronic commerce. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 163–193. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    de la Encina, A., Hidalgo-Herrero, M., Rabanal, P., Rubio, F., Rodríguez, I.: Testing entities in a parallel cognitive language. In: Fifth IEEE International Conference on Cognitive Informatics. IEEE-CS Press, Los Alamitos (2006)Google Scholar
  4. 4.
    Eymann, T.: Markets without makers - a framework for decentralized economic coordination in multiagent systems. In: Fiege, L., Mühl, G., Wilhelm, U.G. (eds.) WELCOM 2001. LNCS, vol. 2232, pp. 63–74. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Flax, L.: Cognitive modeling using a logic-based algebra. In: Fourth IEEE International Conference on Cognitive Informatics, pp. 37–42. IEEE-CS Press, Los Alamitos (2005)Google Scholar
  6. 6.
    Hidalgo-Herrero, M., Rodríguez, I., Rubio, F.: Testing learning strategies. In: Forth IEEE International Conference on Cognitive Informatics, pp. 212–221. IEEE-CS Press, Los Alamitos (2005)Google Scholar
  7. 7.
    Keppens, J., Shen, Q.: A calculus of partially ordered preferences for compositional modelling and configuration. In: AAAI Workshop on Preferences in AI and CP: Symbolic Approaches, pp. 39–46. AAAI Press, Menlo Park (2002)Google Scholar
  8. 8.
    Kraus, S.: Negotiation and cooperation in multi-agent systems. Artificial Intelligence 94(1-2), 79–98 (1997)MATHCrossRefGoogle Scholar
  9. 9.
    Lang, J., van der Torre, L., Weydert, E.: Utilitarian desires. Autonomous Agents and Multi-Agent Systems 5(3), 329–363 (2002)CrossRefGoogle Scholar
  10. 10.
    Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in electronic commerce. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 19–33. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    López, N., Núñez, M., Pelayo, F.L.: Stopa: A stochastic process algebra for the formal representation of cognitive systems. In: Third IEEE International Conference on Cognitive Informatics, pp. 64–73. IEEE-CS Press, Los Alamitos (2004)CrossRefGoogle Scholar
  12. 12.
    López, N., Núñez, M., Rodríguez, I., Rubio, F.: A formal framework for e-barter based on microeconomic theory and process algebras. In: Unger, H., Böhme, T., Mikler, A.R. (eds.) IICS 2002. LNCS, vol. 2346, p. 217. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)Google Scholar
  14. 14.
    McGeachie, M., Doyle, J.: Utility functions for ceteris paribus preferences. In: AAAI Workshop on Preferences in AI and CP: Symbolic Approaches, pp. 33–38. AAAI Press, Menlo Park (2002)Google Scholar
  15. 15.
    Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  16. 16.
    Parsons, S., Wooldridge, M.: Game theory and decision theory in multi-agent systems. Autonomous Agents and Multi-Agent Systems 5(3), 243–254 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pelayo, F.L., Núñez, M., López, N.: Specifying the memorization process with STOPA. In: Fourth IEEE International Conference on Cognitive Informatics, pp. 238–249. IEEE-CS Press, Los Alamitos (2005)Google Scholar
  18. 18.
    Piaget, J.: Introduction á l’Épistemologie Genetique. PUF, Paris (1973)Google Scholar
  19. 19.
    Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-19, Computer Science Department, Aarhus University (1981)Google Scholar
  20. 20.
    Rasmusson, L., Janson, S.: Agents, self-interest and electronic markets. Knowledge Engineering Review 14(2), 143–150 (1999)CrossRefGoogle Scholar
  21. 21.
    Rubio, F., Rodríguez, I.: A parallel language for cognitive informatics. In: Third IEEE International Conference on Cognitive Informatics, pp. 32–41. IEEE-CS Press, Los Alamitos (2004)CrossRefGoogle Scholar
  22. 22.
    Sandholm, T.: Agents in electronic commerce: Component technologies for automated negotiation and coalition formation. In: Klusch, M., Weiss, G. (eds.) CIA 1998. LNCS (LNAI), vol. 1435, pp. 113–134. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Stirling, W.C., Goodrich, M.A., Packard, D.J.: Satisficing equilibria: A non-classical theory of games and decisions. Autonomous Agents and Multi-Agent Systems 5(3), 305–328 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tennenholtz, M.: Game theory and artificial intelligence. In: d’Inverno, M., Luck, M., Fisher, M., Preist, C. (eds.) UKMAS Workshops 1996-2000. LNCS (LNAI), vol. 2403, pp. 49–58. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Wang, Y.: The real time process algebra (RTPA). Annals of Software Engineering 14, 235–274 (2002)MATHCrossRefGoogle Scholar
  26. 26.
    Wang, Y.: Using process algebra to describe human and software behaviors. Brain and Mind 4, 199–213 (2003)CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Liu, D., Ruhe, G.: Formal description of the cognitive process of decision making. In: Third IEEE International Conference on Cognitive Informatics, pp. 124–130. IEEE-CS Press, Los Alamitos (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alberto de la Encina
    • 1
  • Mercedes Hidalgo-Herrero
    • 1
  • Natalia López
    • 1
  1. 1.Universidad Complutense de MadridMadridSpain

Personalised recommendations