Cognitive Prism – More Than a Metaphor of Metaphor

  • Tiansi Dong
Part of the Studies in Computational Intelligence book series (SCI, volume 323)


In this chapter we address a basic question in the functional model of the mind: with which mechanism a cognitive agent can understand new concepts? and propose an answer: the cognitive prism mechanism. This mechanism is rooted in the information process of a neuron. Research results in cognitive psychology and linguistics support that such mechanism is used in concept-understanding in our everyday-life. We show that this mechanism is used to integrate spatial environments existing at different temporal points and form a spatial concept. Lakoff’s theory in concept-understanding can be reformulated in terms of the cognitive prism mechanism. The classic mathematical logic, as well as fuzzy logic, can be understood as the (prism) mapping from language to true or false values. In Chinese medicine, human-body structure is referenced to spatial concepts through certain cognitive prism mechanism. We argue that metaphor is not only the mechanism to relate concepts in non-physical domain to physical ones, but also the mechanism to relate concepts within the physical domain. We briefly criticize the current theory of joke and propose a novel perspective to the understanding of jokes in term of ‘potential tension’ of cognitive prism. We conclude that equipped with the cognitive prism mechanism and concepts of spatial environment cognitive agents shall understand quite a lot of spatial/non-spatial concepts.


Spatial Cognition Acupuncture Point Spatial Environment Spatial Concept Potential Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Attado and Raskin, 1991]
    Attado, S., Raskin, V.: Script theory revis(it)ed: joke similarity and joke representation model. HUMOR International Journal of Humor Research 4(3), 293–347 (1991)CrossRefGoogle Scholar
  2. [Clarke, 1981]
    Clarke, B.L.: A calculus of individuals based on ‘connection’. Notre Dame Journal of Formal Logic 23(3), 204–218 (1981)CrossRefGoogle Scholar
  3. [Clarke, 1985]
    Clarke, B.L.: Individuals and points. Notre Dame Journal of Formal Logic 26(1), 61–75 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  4. [Couclelis et al., 1987]
    Couclelis, H., Golledge, R.G., Gale, N., Tobler, W.: Exploring the anchor-point hypothesis of spatial cognition. Journal of Environmental Psychology 7, 99–122 (1987)CrossRefGoogle Scholar
  5. [de Laguna, 1922]
    de Laguna, T.: Point, line and surface as sets of solids. The Journal of Philosophy 19, 449–461 (1922)CrossRefGoogle Scholar
  6. [Dharmananda, 1996]
    Dharmananda, S.: An Introduction to Acupuncture and how it works. Institute for Traditional Medicine, Portland, Oregon (1996)Google Scholar
  7. [Dong, 2005a]
    Dong, T.: Recognizing Variable Spatial Environments — The Theory of Cognitive Prism. PhD thesis, Department of Mathematics and Informatics, University of Bremen (2005a)Google Scholar
  8. [Dong, 2005b]
    Dong, T.: SNAPVis and SPANVis: Ontologies for Recognizing Variable Vista Spatial Environments. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 344–365. Springer, Heidelberg (2005b)CrossRefGoogle Scholar
  9. [Dong, 2007a]
    Dong, T.: The Nine Comments on the RCC Theory. In: AAAI 2007 Workshop on Spatial and Temporal Reasoning, Vancouver, Canada, pp. 16–20 (2007a)Google Scholar
  10. [Dong, 2007b]
    Dong, T.: Towards a Spatial Representation for the Meta Cognitive Process Layer of Cognitive Informatics. In: Proceedings of the 6th IEEE International Conference on Cogntive Informatics, pp. 52–61. IEEE CS Press, Lake Tahoe (2007b)CrossRefGoogle Scholar
  11. [Dong, 2008]
    Dong, T.: A Comment on RCC: from RCC to RCC + + . Journal of Philosophical Logic 37(4), 319–352 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  12. [Dong and Guesgen, 2008]
    Dong, T., Guesgen, H.W.: A Uniform Framework for Orientation Relation based on Distance Comparison. In: Proceedings of the 7th IEEE International Conference on Cogntive Informatics, pp. 75–82. IEEE CS Press, Stanford University, California (2008)CrossRefGoogle Scholar
  13. [Feldman, 2006]
    Feldman, J.: From Modecule to Metaphor: A Neural Theory of Language. The MIT Press, Cambridge (2006)Google Scholar
  14. [Frank, 1991]
    Frank, A.: Qualitative spatial reasoning with cardinal directions. In: Proceedings of the Seventh Austrian Conference on Artificial Intelligence, pp. 157–167. Springer, Berlin (1991)Google Scholar
  15. [Freksa, 1992]
    Freksa, C.: Using Orientation Information for Qualitative Spatial Reasoning. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639. Springer, Heidelberg (1992)Google Scholar
  16. [Freksa, 1999]
    Freksa, C.: Links vor – prototyp oder gebiet? In: Richheit, G. (ed.) Richtungen im Raum, pp. 231–246. Westdeutscher Verlag, Wiesbaden (1999)Google Scholar
  17. [Grady, 1997]
    Grady, J.: Foundations of meaning: Primary metaphor and primary scenes. PhD thesis, University of California, Berkeley (1997)Google Scholar
  18. [Hernández et al., 1995]
    Hernández, D., Clementini, E., Felice, P.D.: Qualitative distances. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 45–57. Springer, Heidelberg (1995)Google Scholar
  19. [Hilbert and Ackermann, 1938]
    Hilbert, D., Ackermann, W. (1938). Principles of Mathematical Logic, Berlin. Citeation based on the reprinted version by the American Mathematical Society (1999)Google Scholar
  20. [Jolicoeur et al., 1984]
    Jolicoeur, P., Gluck, M.A., Kosslyn, S.M.: From pictures to words: Making the connection. Cognitive Psychology 16, 243–275 (1984)CrossRefGoogle Scholar
  21. [Lakoff and Johnson, 1980]
    Lakoff, G., Johnson, M.: Metaphors We Live By. The University of Chicago Press, Chicago (1980) (Citation is based on the version reprinted in 2003)Google Scholar
  22. [Liter and Buelthoff, 1996]
    Liter, J.C., Buelthoff, H.H.: An Introduction to Object Recognition. Technical report, Max-Planck-Institue fur biologische Kybernetik. Technical Report No. 43 (1996)Google Scholar
  23. [Randell et al., 1992]
    Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Swartout, W., Rich, C. (eds.) Proceeding 3rd International Conference on Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Mateo (1992)Google Scholar
  24. [Raskin, 1985]
    Raskin, V.: Semantic Mechanisms of Humor. Reidel, Dordrecht (1985)Google Scholar
  25. [Renz and Mitra, 2004]
    Renz, J., Mitra, D.: Qualitative direction calculi with arbitrary granularity. In: Zhang, C., Guesgen, H., Yeap, W. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 65–74. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. [Rosch, 1975]
    Rosch, E.: Cognitive Reference Points. Cognitive Psychology 7(4), 532–547 (1975)CrossRefGoogle Scholar
  27. [Rosch et al., 1976]
    Rosch, E., Mervis, C.B., Gray, W., Johnson, D., Boyes-Braem, P.: Basic objects in natural categories. Cognitive Psychology 8, 382–439 (1976)CrossRefGoogle Scholar
  28. [Russell, 1903]
    Russell, B.: The Principles of Mathematics. W.W.Norton& Company, Inc. (1903) (citation, if any, according to the Norton paperback edition reissued in 1996)Google Scholar
  29. [Sadalla et al., 1980]
    Sadalla, E., Burroughs, W.J., Staplin, L.J.: Reference points in spatial cognition. Journal of Experimental Psychology: Human Learning and Memory 6(5), 516–528 (1980)CrossRefGoogle Scholar
  30. [Smith, 2001]
    Smith, B.: Fiat objects. Topoi 20(2), 131–148 (2001)CrossRefGoogle Scholar
  31. [Stonefoot and Freeman, 2004]
    Stonefoot, S.G., Freeman, H.C.: A need for needles Acupuncture – Does it really work? University at Buffalo, State University of New York. National Center for Case Study Teaching in Science (2004)Google Scholar
  32. [Tarski, 1946]
    Tarski, A.: Introduction to Logic and to the Methodology of Deductive Sciences. Oxford University Press, New York (1946) (citation based on the Dover edition, first published in 1995)Google Scholar
  33. [Ullmer-Ehrich, 1982]
    Ullmer-Ehrich, V.: The Structure of Living Space Descriptions. In: Jarvella, R.J., Klein, W. (eds.) Speech, Place, and Action, pp. 219–249. John Wiley & Sons Ltd., Chichester (1982)Google Scholar
  34. [Wang, 2003]
    Wang, Y.: On cognitive informatics. Brain and Mind 4, 151–167 (2003)CrossRefGoogle Scholar
  35. [Wang, 2007]
    Wang, Y.: The theoretical framework of cognitive informatics. International Journal of Cognitive Informatics and Natural Intelligence 1(1), 10–15 (2007)Google Scholar
  36. [Wang et al., 2006]
    Wang, Y., Patel, S., Patel, D.: A layered reference model of the brain (LRMB). IEEE Transactions on Systems, Man, and Cybernetics (Part C) 36(2), 124–133 (2006)CrossRefGoogle Scholar
  37. [Wertheimer, 1938]
    Wertheimer, M.: Numbers and numerical concepts in primitive peoples. In: Ellis, W.D. (ed.) A source book of Gestalt psychology, Brace Co., Harcourt (1938)Google Scholar
  38. [Whitehead, 1929]
    Whitehead, A.N.: Process and Reality. Macmillan Publishing Co., Inc., Basingstoke (1929)zbMATHGoogle Scholar
  39. [Wilson et al., 1999]
    Wilson, B., Baddeley, A., Young, A.: LE, A Person Who Lost Her ‘Mind’s Eye’. Neurocase 5, 119–127 (1999)Google Scholar
  40. [Zadeh, 1965]
    Zadeh, L.A.: Fuzzy sets. Informations and Control 8, 338–353 (1965)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tiansi Dong
    • 1
  1. 1. KoelnGermany

Personalised recommendations