Skip to main content

Abstract

Wild (Crab) apple trees are ancestors and close relatives of domesticated apple trees (Malus × domestica or Malus pumila). There are at least 35 different species of wild apple, with the highest genetic diversity in Central, Inner Asia and West China region. The plants have a wide range of adaptation to different soil and climate conditions and resistance or tolerance to a number of biotic and abiotic stresses. Having the same basic chromosome number, and easily crossable with domestic apple, wild apples are valuable donors of novel traits for commercial apple cultivars. Besides this, wild apples are known worldwide as ornamental plants and are a potential source of health and medical products including polyphenols, pectins, and vitamins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aldwinckle HS, Beer SV (1976) Nutrient status of apple blossoms and their susceptibility to fire blight. Ann Appl Biol 82:159–163

    Article  CAS  Google Scholar 

  • Aldwinckle HS, van der Zwet T (1979) Recent progress in breeding for fire blight resistance in apples and pears in North America. EPPO Bull 9:13–25

    Article  Google Scholar 

  • Aldwinckle HS, Malnoy M, Brown SK, Norelli JL, Beer SV, Meng X, He SY, Jin QL, Borejsza-Wysocka EE (2003) Development of fire blight resistant apple cultivars by genetic engineering. Acta Hortic 622:105–111

    CAS  Google Scholar 

  • Allardice P (1993) A–Z of companion planting. Angus & Robertson, Australia, 208 p

    Google Scholar 

  • Alston FH, Briggs JB (1970) Inheritance of hypersensitivty to rosy apple aphid Dysaphis plantaginea in apple. Can J Genet Cytol 12:257–258

    Google Scholar 

  • Antofie A, Lateur M, Oger R, Patocchi A, Durel CE, Van de Weg WE (2007) A new versatile database created for geneticists and breeders to link molecular and phenotypic data in perennial crops: the AppleBreed DataBase. Bioinformatics 23(7):882–891

    Article  CAS  PubMed  Google Scholar 

  • Benaouf G, Parisi L (2000) Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90:236–242

    Article  CAS  PubMed  Google Scholar 

  • Bessho H, Tsuchiya S, Soejima J (1994) Screening methods of apple trees for resistance to Valsa canker. Euphytica 77:15–18

    Article  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Fischer C, Hanke V, Dunemann F (2004) Development of molecular markers for Vr1 a scab resistance factor from R12740-7A apple. Acta Hortic 663:171–175

    CAS  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Peil A, Fischer C, Dunemann F (2006) Development of a multiallelic SCAR marker for the scab resistance gene Vr1 from R12740-7A apple and its utility for molecular breeding. Tree Genet Genomes 2:186–195

    Article  Google Scholar 

  • Bretting PK, Widrlechner MP (1995) Genetic markers and plant genetic resources. Plant Breed Rev 13:11–86

    Google Scholar 

  • Brooks HJ, Vest G (1985) Public programs on genetics and breeding horticultural crops in the United States. HortScience 20:826–830

    Google Scholar 

  • Bus V, Rikkerink E, Aldwinckle HS, Caffier V, Durel CE, Gardiner S, Gessler C, Groenwold R, Laurens F, Le Cam B, Luby J, Meulenbroek B, Kellerhals M, Parisi L, Patocchi A, Plummer K, Schouten HJ, Tartarini S, van de Weg WE (2009) A proposal for the nomenclature of Venturia inaequalis races. Acta Hort (ISHS) 814:739–746

    Google Scholar 

  • Bus VGM, Laurens FND, van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, Plummer KM (2005a) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytol 166(3):1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Bus VGM, Rikkerink EHA, van de Weg WE, Rusholme RL, Gardiner SE, Bassett HCM, Kodde LP, Parisi L, Laurens FND, Meulenbroek EJ, Plummer KM (2005b) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Mol Breed 15:103–116

    Article  CAS  Google Scholar 

  • Caffier VV, Parisi LL (2007) Development of apple powdery mildew on sources of resistance to Podosphaera leucotricha, exposed to an inoculum virulent against the major resistance gene Pl-2. Plant Breed 126(3):319–322

    Article  CAS  Google Scholar 

  • Calenge F, Durel CE (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol Breed 17:329–339

    Article  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhart C, van de Weg W.E., Parisi L, Durell C-E. (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Ventura inaequalis. Phytopathology 4(94):370–379

    Google Scholar 

  • Celton J-M, Tustin D, Chagné D, Gardiner S (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5(1):93–107

    Google Scholar 

  • Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 3(8):212

    Article  CAS  Google Scholar 

  • Chagné D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EH, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92(5):353–358

    Article  PubMed  CAS  Google Scholar 

  • Challice JS, Westwood MN (1973) Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot J Linn Soc 67:121–148

    Article  Google Scholar 

  • Chen X, Feng T, Zhang Y, He T, Feng J, Zhang C (2007) Genetic diversity of volatile components in Xinjiang Wild Apple (Malus sieversii). J Genet Genom 34(2):171–179

    Article  CAS  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK, Aldwinckle HS, Gardiner SE, Bus VG (1998) Development of a DNA marker for Vm gene conferring resistance to apple scab. Genome 41(2):208–214

    Article  CAS  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1986) Glossary of Indian medicinal plants (including the supplement). Council of Scientific and Industrial Research, New Delhi, India

    Google Scholar 

  • Coart E, Vekemans X, Smulders MJM, Wagner I, Van Huylenbroeck J, Van Bockstaele E, Roldan-Ruiz I (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L) Mill) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol Ecol 12(4):845–852

    Article  CAS  PubMed  Google Scholar 

  • Coart E, Van Glabeke S, De Loose M, Larsen AS, Roldan-Ruiz I (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L) Mill) and the domesticated apple (Malus domestica Borkh). Mol Ecol 15:2171–2182

    Article  CAS  PubMed  Google Scholar 

  • Costa F, Stella S, Soglio V, Gianfranceschi L, Schouten H, Van de Weg WE, Guerra W, Serra S, Musacchi S, Sansavini S (2007) Comprehensive analysis of candidate genes involved in ethylene production and perception during apple ripening: phenotypic dissection and functional profiling. In: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E (eds) Advances in plant ethylene research. Springer, Netherlands, pp 423–429

    Chapter  Google Scholar 

  • Crosby JA, Janick J, Pecknold PC, Korban SS, O’Connon PA, Ries SM, Goffreda J, Voordeckers A (1992) Breeding apples for scab resistance: 1945–1990. Fruit Var J 46(3):145–166

    Google Scholar 

  • Cummins JN, Aldwinckle HS (1983) Breeding apple rootstocks. In: Janick J (ed) Plant breeding review 1983. Wiley, New York, USA, pp 294–394

    Google Scholar 

  • Cummins JN, Forsline PL, Mackenzie JD (1981) Woolly apple aphid colonization on Malus cultivars. J Am Soc Hortic Sci 106:26–30

    Google Scholar 

  • Currie AJ, Ganeshanandam S, Noiton DAM, Garrick D, Shelbourne CJA, Oraguzie NC (2000) Quantitative evaluation of apple (Malus x domestica Borkh) fruit shape by principal component analysis of Fourier descriptors. Euphytica 111:219–227

    Article  Google Scholar 

  • Darlington CD, Moffett AA (1930) Primary and secondary chromosome balance in Pyrus. J Genet 22:129–151

    Article  Google Scholar 

  • Dayton DF (1977) Genetic immunity to apple mildew incited by Podosphaera leucotricha. HortScience 12:225–226

    Google Scholar 

  • Dayton DF, Williams EB (1968) Independent genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hortic Sci 92:89–93

    Google Scholar 

  • Dayton DF, Williams EB (1970) Additional allelic genes in Malus for scab resistance of two reaction types. J Am Soc Hortic Sci 95:735–736

    Google Scholar 

  • Dayton DF, Shay JR, Hough LF (1953) Apple scab resistance from R12740-7A, a Russian apple. Proc Am Soc Hortic Sci 62:334–340

    Google Scholar 

  • Derman H (1949) Are the pomes amphidiploid? A note on the origin of the Pomoideae. J Hered 40:221–222

    Google Scholar 

  • Dickson EE, Forsline PL (1994) Collection of wild apple in middle Asia. Malus 8:11–14

    Google Scholar 

  • Duke JA, Ayensu ES (1985) Medicinal plants of China. Reference Publications, Beijing, ISBN 0-917256-20-4

    Google Scholar 

  • Dunemann F, Schuster M (2008) Genetic characterization and mapping of the major powdery mildew resistance gene Plbj from Malus baccata jackii. Acta Hortic 814:791–798

    Google Scholar 

  • Einset J (1945) The spontaneous origin of polyploid apples. Proc Am Soc Hortic Sci 46:91–93

    Google Scholar 

  • Erdin N, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49:1238–1245

    Article  CAS  PubMed  Google Scholar 

  • Evans KM, James CM (2003) Identification of SCAR markers linked to PI-w mildew resistance in apple. Theor Appl Genet 106(7):1178–1183

    CAS  PubMed  Google Scholar 

  • Fisher M, Fisher C (2004) Genetic resources as a basic for new resistant apple cultivars. J Fruit Ornam Plant Res 12:63–76

    Google Scholar 

  • Food and Agriculture Organization (FAO) (2008) Food and Agriculture Organization of the United Nations Statistical Database. http://faostatfaoorg. Accessed 30 Mar 2009

  • Forsline PL (1996) Core subsets in the USDA/NPGS with apple as an example. In: Proceedings of 2nd workshop on clonal genetic resources, Ottawa, Ontario, Canada, 23–24 Jan 1996, pp 172–175

    Google Scholar 

  • Forsline PL, McFerson JR, Lamboy WF, Towill LE (1998) Development of base and active collection of Malus germplasm with cryopreserved dormant buds. Acta Hortic 484:75–78

    Google Scholar 

  • Forte AV, Ignatov AN, Ponomarenko VV, Dorokhov DB, Savel’ev NI (2002) Phylogeny of the Malus (apple tree) species inferred from its morphological traits and molecular DNA analysis. Genetika 38(10):1357–1369

    CAS  PubMed  Google Scholar 

  • Frankel OH, Brown AHD (1984) Current plant genetic resources – a critical appraisal in genetics, New frontiers. Oxford and IBH, New Delhi, India

    Google Scholar 

  • Gallott JC, Lamb RC, Aldwinckle HS (1985) Resistance to powdery mildew from some small fruited Malus cultivars. HortScience 20:1085–1087

    Google Scholar 

  • Gardiner S, Murdoch J, Meech S, Rusholme R, Bassett H, Cook M, Bus V, Rikkerink E, Gleave A, Crowhurst R, Ross G, Warrington I (2003) Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Hortic 622:141–151

    CAS  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus 9 domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Res Crop Evol 56(6): 829–842

    Google Scholar 

  • Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93: 199–204

    Google Scholar 

  • Gianfranceschi L, Soglio V (2004) The European 589 project HiDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Hortic 663:327–330

    Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner SE, Bassett HCM, Forster R (1997) Microsatellites in Malus x domestica (apple) abundance polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709

    Article  CAS  PubMed  Google Scholar 

  • Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18(8):426–430

    Article  CAS  PubMed  Google Scholar 

  • Herman DB, Forester SCM, Quam VC (1996) North Dacota Tree Handbook http://www.ag.ndsu.edu/trees/handbook.htm

  • Hemmat M, Brown SK, Weeden NF (2002) Tagging and mapping scab resistance genes from R12740-7A apple. J Am Soc Hortic Sci 127(3):365–370

    CAS  Google Scholar 

  • Hokanson SC, Lamboy WF, Szewc-McFadden AK, McFerson JR (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118:281–294

    Google Scholar 

  • Hokanson SC, McFerson JR, Forsline PL, Lamboy WF, Luby JJ, Djangaliev AD, Aldwinckle HS (1997) Collecting and managing wild Malus germplasm in its center of diversity. HortScience 32(2):173–176

    Google Scholar 

  • Hokanson SC, SzewcMcFadden AK, McFerson JR, Lamboy WF (1998) Microsatellite (SSR) markers reveal genetic identities genetic diversity and relationships in a Malus × domestica core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  • Hough LF (1944) A survey of the scab-resistance of the foliage on seedlings in selected apple progenies. Proc Am Soc Hortic Sci 44:260–272

    Google Scholar 

  • Hough LF, Shay JR, Dayton DF (1953) Apple scab resistance from Malus floribunda. Proc Am Soc Hortic Sci 62:805–820

    Google Scholar 

  • James CM, Evans KM (2004) Identification of molecular markers linked to the mildew resistance gene Pl-d and Pl-w in apple. Acta Hortic 663:123–128

    CAS  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding, vol I, Tree and tropical fruits. Wiley, New York, USA, pp 1–77

    Google Scholar 

  • Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinformatics 9(5):130

    Article  CAS  Google Scholar 

  • Juniper BE, Mabberley DJ (2006) The story of the apple. Timber, Oregon, USA, 240 p

    Google Scholar 

  • Juniper BE, Watkins R, Harris SA (1999) The origin of the apple. Acta Hortic 484:27–33

    Google Scholar 

  • Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus x domestica Borkh.) based on AFLP and microsatellite markers. Mol Breed 15:205–219

    Google Scholar 

  • Knight RL, Alston FH (1968) Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Can J Genet Cytol 10:294–298

    Google Scholar 

  • Knight RL, Briggs JB, Massee AM, Tydeman HM (1962) The inheritance of resistance to woolly aphid, Eriosoma lanigerum (Hsmnn.), in the apple. J Hortic Sci Bull 9:13–25

    Google Scholar 

  • Kobel F (1954) Lehrbuch des Obstbaus auf Physiologischer Grundlage. Springer, Berlin, Germany, 348 p

    Google Scholar 

  • Koch T, Kellerhals M, Gessler C (2000) Virulence pattern of Venturia inaequalis field isolates and corresponding differential resistance in Malus x domestica. J Phytopathol (Phytopathol Z) 148(6):357–364

    Google Scholar 

  • Koller B, Gianfranceschi L, Seglias N, McDermatt J, Gessler C (1994) DNA markers linked to Malus floribunda 821 scab-resistance. Plant Mol Biol 26:597–602

    Article  CAS  PubMed  Google Scholar 

  • Korban SS (1986) Interspecific hybridization in Malus. HortScience 21:41–48

    Google Scholar 

  • Korban SS, Dayton DF (1983) Evaluation of Malus germplasm for resistance to powdery mildew. HortScience 18:219–220

    Google Scholar 

  • Korban SS, Skirvin RM (1984) Nomenclature of the cultivated apple. HortScience 19:177–180

    Google Scholar 

  • Lambardi M, De Carlo A (2002) Application of tissue culture to the germplasm conservation of temperate broad-leaf trees. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer, Dordrecht, Netherlands, pp 815–840

    Google Scholar 

  • Langenfelds V (1991) Apple tree systematics. Rija, Zinatne, pp 119–195 (in Russian)

    Google Scholar 

  • Larsen AS, Asmussen CB, Coart E, Olrik DC, Kjer ED (2006) Hybridization and genetic variation in Danish populations of European crab apple (Malus sylvestris). Tree Genet Genomes 2:86–97

    Article  Google Scholar 

  • Laurens F (1999) Review of the current apple breeding programs in the world: objectives for scion cultivar improvement. Acta Hort 484:163–170

    Google Scholar 

  • Lee KW, Kim YJ, Kim DO, Lee HJ, Lee CY (2003) Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem 51(22):6516–6520

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Lee SJ, Kang NJ, Lee CY, Lee HJ (2004) Effects of phenolics in Empire apples on hydrogen peroxide-induced inhibition of gap-junctional intercellular communication. Biofactors 21(1–4):361–365

    PubMed  Google Scholar 

  • Lespinasse Y, Bouvier L, Djulbic M, Chevreau E (1999) Haploid in apple and pear. Acta Hortic 484:49–54

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh). Mol Breed 10(4):217–241

    Article  CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus pumila Mill). Theor Appl Genet 106:1497–1508

    CAS  PubMed  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner SE, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill) using multi-allelic markers. Theor Appl Genet 97(1–2):60–73

    Google Scholar 

  • Markussen T, Kruger J, Schmidt H, Dunemann F (1995) Identification of PCR-based marker linked to the powdery-mildew-resistance gene Pl1 from Malus robusta in cultivated apple. Plant Breed 114:530–534

    Article  CAS  Google Scholar 

  • McHardy WE (1996) Apple scab-biology. Epidemiology and management. APS, St Paul, MN, p 545

    Google Scholar 

  • Milewska-Pawliczuk E, Kubicki B (1977) Induction of androgenesis in vitro in Malus x domestica. Acta Hortic 78:271–276

    Google Scholar 

  • Moerman D (1998) Native American ethnobotany. Timber, Oregon, USA

    Google Scholar 

  • Nakayama R, Saito K, Yamamoto R (1971) Studies on the hybridization in apple breeding II-Anther culture of apple. Bull Fac Agric Hirosaki Univ 17:12–19

    Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EH, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJ, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141(1):147–166

    Article  PubMed  Google Scholar 

  • Norelli JL, Holleran HT, Johnson WC, Robinson TL, Aldwinckle HS (2003) Resistance of Geneva and other rootstocks to Erwinia amylovora. Plant Dis 87:26–32

    Article  Google Scholar 

  • Oraguzie NC, Gardiner SE, Basset HCM, Stefanati M, Ball RD, Bus VGM, White AG (2001) Genetic diversity and relationships in Malus sp. germplasm collections as determined by randomly amplified polymorphic DNA. J Am Soc Hortic Sci 126(3):318–328

    Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Kruger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf-gene. Phytopathology 83:533–537

    Article  Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124(2):147–156

    Google Scholar 

  • Patocchi A, Gessler C (2003) Genome scanning approach (GSA) a fast method for finding molecular markers associated to any trait. In: Proceedings of plant and animal genome XI conference, San Diego, CA, USA. http://wwwintl-pagorg/11/abstracts/P3b_P178_XIhtml

  • Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, Gessler C (1999) Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol Gen Genet 262(4–5):884–891

    CAS  PubMed  Google Scholar 

  • Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr2: a new apple scab resistance gene. Theor Appl Genet 109:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Patocchi A, Walser M, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–663

    Article  CAS  PubMed  Google Scholar 

  • Patocchi A, Fernandez-Fernandez FK, Evans D, Gobbin F, Rezzonico A, Boudichevskaia A, Dunemann M, Stankiewicz-Kosyl F, Mathis-Jeanneteau CE, Durel L, Gianfranceschi F, Costa C, Toller V, Cova D, Mott M, Komjanc E, Barbaro L, Kodde E, Rikkerink C, Gessler C, van de Weg WE (2009) Development and test of 21 multiplex PCRs composed of SSRs spanning most of the apple genome. Tree Genet Genomes 5:211–223

    Article  Google Scholar 

  • Peil A, Garcia-Libreros T, Richter K, Trognitz FC, Trognitz B, Hanke M-V, Flachowsky H (2007) Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3 detected by rapid genome scanning. Plant Breed 126:470–476

    Article  CAS  Google Scholar 

  • Peil A, Dunemann F, Richter K, Hoefer M, Király I, Flachowsky H, Hanke M-V (2008) Resistance breeding in apple at Dresden-Pillnitz. In: Boos M (ed) Ecofruit. Proceedings of 13th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, Germany, 18–20 Feb 2008, pp 220–225

    Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7(4):275–291

    Article  CAS  Google Scholar 

  • Ponomarenko V (1987) History of Malus domestica Borkh origin and evolution (In Russian). Bot J USSR 176:10–18

    Google Scholar 

  • Ponomarenko V (1992) Critical review of the system of the genus Malus Mill (Rosaceae) species. Bulletin of applied botany genetics and plant breeding. Russ Acad Agric Sci 146:1–10

    Google Scholar 

  • Potter D, Gao F, Bortiri PE, Oh SH, Baggett S (2002) Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnLtrnF nucleotide sequence data. Plant Syst Evol 231:77–89

    Article  CAS  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA et al (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey SV, Rafalski AJ (1996) The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Ragan WH (1926) Nomenclature of the apple: a catalogue index of the known varieties referred to in American publications from 1804 to 1904. USDA Bur Plant Indust Bull 56. USDA, Washington DC

    Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs exclusive of the subtropical and warm temperate regions, 2nd edn. Macmillan, New York, USA, 996 p

    Google Scholar 

  • Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill (Rosaceae) with emphasis on the cultivated apple Malus domestica Borkh. Plant Syst Evol 226:35–58

    Article  CAS  Google Scholar 

  • Roche P, Alston FH, Maliepaard C, Evans KM, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C, King GJ (1997) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theor ApplGenet 94:528–533

    Article  CAS  Google Scholar 

  • Rivera D, Obón C, Inocencio C, Heinrich M, Verde A, Fajardo J, Palazón J (2005) The ethnobotanical study of local Mediterranean food plants as medicinal resources in southern Spain. J Physiol Pharmacol 56(1):97–114

    Google Scholar 

  • Sansavini S (2004) Europe’s organic fruit industry. Chron Hortic 44(2):6–11

    Google Scholar 

  • Sax K (1931) The origin and relationships of the Pomoideae. J Arn Arbor 12:3–22

    Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJ, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma JH, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao JL, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144(4):1899–1912

    Article  CAS  PubMed  Google Scholar 

  • Schuster M (2000) Genetics of powdery mildew resistance in Malus species. ISHS Acta Hortic 538:593–595

    Google Scholar 

  • Seglias NP, Gessler C (1997) Genetics of apple powdery mildew resistance from Malus zumi (Pl2). Plant Pathology 54(2):116–124

    Google Scholar 

  • Shay JR, Dayton DF, Hough LF (1953) Apple scab resistance from a number of Malus species. Proc Am Hortic Sci 62:348–356

    Google Scholar 

  • Shay JR, Williams EB, Janick J (1962) Disease resistance in apple and pear. Proc Am Soc Hortic Sci 80:97–104

    Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Steiner P (2000) Integrated orchard and nursery management for the control of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, UK, pp 339–358

    Google Scholar 

  • Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (1999) Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed 118(2):183–186

    Article  Google Scholar 

  • Tatum TC, Stepanovic S, Biradar DP, Rayburn AL, Korban SS (2005) Variation in nuclear DNA content in Malus species and cultivated apples. Genome 48:924–930

    CAS  PubMed  Google Scholar 

  • Urbanietz A, Dunemann F (2005) Isolation, identification and molecular characterization of physiological races of apple powdery mildew (Podosphaera leucotricha). Plant Pathol 54:125–133

    Article  CAS  Google Scholar 

  • van der Zwet T (2002) Present worldwide distribution of fire blight. Acta Hortic 590:33–34

    Google Scholar 

  • van Hintum TJL (1999) The general methodology for creating a core collection In: Johnson RC, Hodgkin T (eds) Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, Italy, pp 10–17

    Google Scholar 

  • Vavilov NI (1930) Wild progenitors of the fruit trees of Turkistan and the Caucasus and the problem of the origin of fruit trees. In: International horticultural congress group B, pp 271–286

    Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed 123(4):321–326

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Watkins R (1995) Apple and pear. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Wiley, New York, USA, pp 418–422

    Google Scholar 

  • Way RD, Aldwinckle HS, Lamb RC, Rejman A, Sansavini S, Shen T, Watkins R, Westwood MM, Yoshida Y (1990) Apples (Malus). In: Moore JN, Ballington Jr JR (eds) Genetic resources of temperate fruit and nut. International Society for Horticultural Science, Wageningen, Netherlands. Acta Hortic 290:1–62

    Google Scholar 

  • Wiedow C, Dehmer KJ, Geibel M (2004) Molecular diversity in populations of Malus sieversii (Ledeb) Roem. Acta Hortic 663:539–543

    Google Scholar 

  • Williams EB, Dayton DF (1968) Four additional sources of the Vf locus for Malus scab resistance. Proc Am Soc Hortic Sci 92:95–98

    Google Scholar 

  • Williams EB, Kuc J (1969) Resistance in Malus to Venturia. Annu Rev Phytopathol 7:223–224

    Article  CAS  Google Scholar 

  • Williams EB, Dayton DF, Shay JR (1966) Allelic genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hortic Sci 88:52–56

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S (2008) Expressed sequence tag analysis of the response of apple (Malus x domestica ‘Royal Gala’) to low temperature and water deficit. Physiol Plant 133(2):298–317

    Article  CAS  PubMed  Google Scholar 

  • Yan G, Long H, Song W, Chen R (2008) Genetic polymorphism of Malus sieversii populations in Xinjiang, China. Genetic Resour Crop Evol 55(1):171–181

    Google Scholar 

  • Zhou Z (1999) The apple genetic resources in China: the wild species and their distributions informative characteristics and utilization. Genet Resour Crop Evol 46:599–609

    Article  Google Scholar 

  • Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the Old World. Science 187:319–327

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ignatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ignatov, A., Bodishevskaya, A. (2011). Malus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16057-8_3

Download citation

Publish with us

Policies and ethics