Skip to main content

Where Does Desertification Occur? Mapping Dryland Degradation at Regional to Global Scales

Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

To make sense of the controversies about Sahelian desertification, we must be able to assess objectively the processes, their location and level of threat to drylands and those who inhabit them. Surprisingly, after the United Nations Conference on Desertification (UNCOD) was set up in 1977, there still are no reliable maps or means of monitoring desertification at the sub-national to global scales, even in the iconic Sahel region. These are the scales needed to formulate institutional policies for prevention and remediation and for Earth system science. While there are a few maps that do extend to larger areas, they mostly have serious shortcomings. This void is partly because suitable metrics have not been available and those that have been proposed can be difficult or impossible to apply over large areas. One of the most basic problems is the lack of comparison with non-desertified sites and an absence of validation, without which statements about more or less desertification are misleading. Furthermore, existing maps are mostly based on subjective assessments by experts, and therefore cannot be applied elsewhere or by different observers, nor can they be used in future for monitoring. Consequently, unsupported statements about the extent and severity of desertification abound. This chapter reviews the existing global maps and sets out principles for more rigorous mapping and proposes methods that adhere to these. Decades of work have improved our understanding of individual components of the desertification processes, but have not answered the three fundamental questions at the regional to global scales: What is degraded? Where does it occur? How severe is the degradation?

Keywords

  • Methods for mapping desertification
  • Drylands
  • Global
  • GLASOD
  • GLADA
  • USDA NRCS

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-16014-1_9
  • Chapter length: 39 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-16014-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8
Fig. 9.9

References

  • Abella, S. R., Chiquoine, L. P., Newton, A. C., & Vanier, C. H. (2015). Restoring a desert ecosystem using soil salvage, revegetation, and irrigation. Journal of Arid Environments, 115, 44–52.

    CrossRef  Google Scholar 

  • Adeel, Z., Safriel, U., Niemeijer, D., & White, R. (Eds.). (2005). Millennium ecosystem assessment. Ecosystems and human well-being: Desertification synthesis. Washington, D.C.: World Resources Institute.

    Google Scholar 

  • Al-Bakri, J. T., Taylor, J. C., & Brewer, T. R. (2001). Monitoring land use change in the Badia transition zone in Jordan using aerial photography and satellite imagery. The Geographical Journal, 167, 248–262.

    CrossRef  Google Scholar 

  • Asner, G. P., & Heidebrecht, K. B. (2002). Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations. International Journal of Remote Sensing, 23, 3939–3958.

    CrossRef  Google Scholar 

  • Bai, Z. G., Conijn, J. G., Bindraban, P. S., & Rutgers, B. (2012). Global changes of remotely sensed greenness and simulated biomass production since 1981. Towards mapping global soil degradation Report 2012/02. Wageningen: ISRIC.

    Google Scholar 

  • Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil Use and Management, 24, 223–234.

    CrossRef  Google Scholar 

  • Bastin, G., Pickup, G., Chewings, V., & Pearce, G. (1993). Land degradation assessment in central Australia using a grazing gradient method. Rangeland Journal, 15, 190–216.

    CrossRef  Google Scholar 

  • Batjes, N. H. (1996). Global assessment of land vulnerability to water erosion on a 1/2 by 1/2 grid. Land Degradation and Development, 7, 353–365.

    CrossRef  Google Scholar 

  • Batjes, N., Dijkshoorn, K., van Engelen, V., Fischer, G., Jones, A., Montanarella, L., et al. (2012). Harmonized world soil database: Version 1.2. FAO, Rome, Italy and IIASA, Laxenburg, Austria: FAO/IIASA/ISRIC/ISSCAS/JRC.

    Google Scholar 

  • Beinroth, F. H., Eswaran, H., & Reich, P. F. (2001). Global assessment of land quality. In D. E. Stott, R. H. Mohtar & G. C. Steinhardt (Eds.), Sustaining the global farm: Selected papers from the 10th international soil conservation organization meeting (pp. 569–574). Purdue University and the USDA-ARS National Soil Erosion Research Laboratory.

    Google Scholar 

  • Berry, L., Abraham, E., & Essahli, W. (2009). UNCCD recommended minimum set of impact indicators. UNCCD.

    Google Scholar 

  • Boer, M. M., & Puigdefábregas, J. (2003). Predicting potential vegetation index values as a reference for the assessment and monitoring of dryland condition. International Journal of Remote Sensing, 24, 1135–1141.

    CrossRef  Google Scholar 

  • Bossio, D., Geheb, K., & Critchley, W. (2010). Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods. Agricultural Water Management, 97, 536–542.

    CrossRef  Google Scholar 

  • Bowker, M. A., Belnap, J., & Miller, M. E. (2006). Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangeland Ecology and Management, 59, 519–529.

    CrossRef  Google Scholar 

  • Bridges, E. M., & Oldeman, L. R. (1999). Global assessment of human-induced soil degradation. Arid Soil Research and Rehabilitation, 13, 319–325.

    CrossRef  Google Scholar 

  • Brown, M. E. (2008). Famine early warning systems and remote sensing data. Berlin: Springer.

    Google Scholar 

  • Brown, M. E., Grace, K., Shively, G., Johnson, K. B., & Carroll, M. (2014). Using satellite remote sensing and household survey data to assess human health and nutrition response to environmental change. Population and Environment, 36, 48–72.

    CrossRef  Google Scholar 

  • Cai, X., Zhang, X., & Wang, D. (2010). Land availability for biofuel production. Environmental Science and Technology, 45, 334–339.

    CrossRef  Google Scholar 

  • Castro, J. M., Salomone, J. M., & Reichart, R. N. (1980). Estudio de los focos de erosión en el SO de la Provincia de Chubut. In Informe Técnico (p. 68). Trelew, Argentina: Instituto Nacional de Tecnología Agropecuaria.

    Google Scholar 

  • Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., et al. (2010). Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology, 122, 167–177.

    CrossRef  Google Scholar 

  • CIESIN. (2005). Gridded Population of the World (GPW), v3. Socioeconomic Data and Applications Center (SEDAC), http://sedac.ciesin.columbia.edu/. Accessed February 7, 2015.

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.

    CrossRef  Google Scholar 

  • Conant, R. T., & Paustian, K. (2002). Potential soil carbon sequestration in overgrazed grassland ecosystems. Global Biogeochemical Cycles, 16, 1143.

    CrossRef  Google Scholar 

  • Cook, B., & Pau, S. (2013). A global assessment of long-term greening and browning trends in pasture lands using the GIMMS LAI3 g dataset. Remote Sensing, 5, 2492–2512.

    CrossRef  Google Scholar 

  • Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Digital change detection methods in ecosystem monitoring: A review. International Journal of Remote Sensing, 25, 1565–1596.

    CrossRef  Google Scholar 

  • CSE. (2015). Centre de Suivi Ecologique (Ecological Monitoring Center), http://www.cse.sn. Accessed February 6, 2015.

  • Dawelbait, M., & Morari, F. (2012). Monitoring desertification in a Savannah region in Sudan using landsat images and spectral mixture analysis. Journal of Arid Environments, 80, 45–55.

    CrossRef  Google Scholar 

  • Deichmann, U. (1994). A medium resolution population database for Africa: Technical paper and digital database. Santa Barbara: National Center for Geographic Information and Analysis.

    Google Scholar 

  • del Valle, H. F., Blanco, P. D., Metternicht, G. I., & Zinck, J. A. (2010). Radar remote sensing of wind-driven land degradation processes in Northeastern Patagonia. Journal of Environmental Quality, 39, 62–75.

    CrossRef  Google Scholar 

  • den Biggelaar, C., Lal, R., Wiebe, K., Eswaran, H., Breneman, V., & Reich, P. (2004). The global impact of soil erosion on productivity II: Effects on crop yields and production over time. Advances in Agronomy, 81, 1–48.

    CrossRef  Google Scholar 

  • DESIRE. (2008). Manual for describing land degradation indicators. Athens: Agricultural University of Athens.

    Google Scholar 

  • Dewitte, O., Jones, A., Elbelrhiti, H., Horion, S., & Montanarella, L. (2012). Satellite remote sensing for soil mapping in Africa: An overview. Progress in Physical Geography, 36, 514–538.

    CrossRef  Google Scholar 

  • Dijkshoorn, J. A., van Engelen, W. W. P., & Huting, J. R. M. (2008). Global Assessment of Land Degradation Soil and landform properties for LADA partner countries (Argentina, China, Cuba, Senegal and The Gambia, South Africa and Tunisia). ISRIC report 2008/06 and GLADA report 2008/0. Wageningen: ISRIC—World Soil Information Center and FAO.

    Google Scholar 

  • Dregne, H. E. (1983). Desertification of arid lands. In F. El-Baz & M. H. A. Hassan (Eds.), Physics of desertification (p. 242). Chur, Switzerland; New York: Harwood Academic Publishers.

    Google Scholar 

  • Dregne, H. E., & Chou, N. T. (1992). Global desertification dimensions and costs. In H. E. Dregne (Ed.), Degradation and restoration of arid lands. Lubbock, Texas: International Center for Arid and Semiarid Land Studies, Texas Tech. University.

    Google Scholar 

  • Ellis, E. C., & Ramankutty, N. (2008). Putting people in the map: Anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6, 439–447.

    CrossRef  Google Scholar 

  • Eswaran, H., Almaraz, R., van den Berg, E., & Reich, P. (1997). An assessment of soil resources of Africa in relation to productivity. Geoderma, 77, 1–18.

    CrossRef  Google Scholar 

  • Eswaran, H., Lal, R., & Reich, P. F. (2001). Land degradation: an Overview. In E. M. Bridges, I. D. Hannam, L. R. Oldeman, F. W. T. Pening de Vries, S. J. Scherr, & S. Sompatpanit (Eds.), Responses to land degradation. Khon Kaen, Thailand: Oxford Press.

    Google Scholar 

  • FAO/UNESCO. (1991). The digitized soil map of the world. In World Soil Resources Report, Rome.

    Google Scholar 

  • FAOSTAT. (2015). Food and agriculture organization of the United Nations, statistics division. http://faostat.fao.org. Accessed February 7, 2015.

  • Feddema, J. J. (1999). Future African water resources: Interactions between soil degradation and global warming. Climatic Change, 42, 561–596.

    CrossRef  Google Scholar 

  • FEWS Net. (2015). Famine early warning network. http://www.fews.net. Accessed February 7, 2015.

  • Furby, S., Caccetta, P., & Wallace, J. (2010). Salinity monitoring in Western Australia using remotely sensed and other spatial data. Journal of Environmental Quality, 39, 16–25.

    CrossRef  Google Scholar 

  • Gao, J., & Liu, Y. (2010). Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. International Journal of Applied Earth Observation and Geoinformation, 12, 9–16.

    CrossRef  Google Scholar 

  • GCMD. (2015). Global change master directory. http://gcmd.nasa.gov. Accessed February 6, 2015.

  • Geist, H. (2005). The causes and progression of desertification. Abingdon Oxon, UK: Ashgate Publishing.

    Google Scholar 

  • Gibbs, H. K., & Salmon, J. M. (2015). Mapping the world’s degraded lands. Applied Geography, 57, 12–21.

    CrossRef  Google Scholar 

  • GIEWS. (2015). Global information and early warning system. http://www.fao.org/giews/english/index.htm. Accessed February 15, 2015.

  • GLADIS. (2015). Global land data information system. http://www.fao.org/nr/lada. Accessed February 8, 2015.

  • Hagen-Zanker, A., Engelen, G., Hurkens, J., Vanhout, R., & Uljee, I. (2006). Map Comparison Kit (MCK). 3.0. Maastricht, The Netherlands: Research Institute for Knowledge Systems (RIKS bv).

    Google Scholar 

  • Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. International Journal of Climatology, 34, 623–642. doi:10.1002/joc.3711.

    CrossRef  Google Scholar 

  • Herrick, J. E., Lessard, V. C., Spaeth, K. E., Shaver, P. L., Dayton, R. S., Pyke, D. A., et al. (2010). National ecosystem assessments supported by scientific and local knowledge. Frontiers in Ecology and the Environment, 8, 403–408.

    CrossRef  Google Scholar 

  • Hill, J. (2001). Remote sensing of surface properties. In S.-W. Breckle, M. Veste & W. Wucherer (Eds.), The key to land degradation and desertification assessments. Sustainable land use in deserts (pp. 243–254). Springer, Berlin.

    Google Scholar 

  • Holm, A. M., Cridland, S. W., & Roderick, M. L. (2003). The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sensing of Environment, 85, 145–158.

    CrossRef  Google Scholar 

  • Ibáñez, J., Martínez Valderrama, J., & Puigdefabregas, J. (2008). Assessing desertification risk using system stability condition analysis. Ecological Modelling, 213, 180–190.

    CrossRef  Google Scholar 

  • IPBES. (2015). Intergovernmental panel on biodiversity and ecosystem services. http://www.ipbes.net/. Accessed June 9, 2015.

  • IPCC. (2015). Intergovernmental panel on climate change. http://ipcc.ch/. Accessed February 7, 2015.

  • Izaurralde, R. C., Williams, J. R., Post, W. M., Thomson, A. M., McGill, W. B., Owens, L. B., & Lal, R. (2007). Long-term modeling of soil C erosion and sequestration at the small watershed scale. Climatic Change, 80, 73–90.

    CrossRef  Google Scholar 

  • Kirkby, M. J., Irvine, B. J., Jones, R. J. A., & Govers, G. (2008). The PESERA coarse scale erosion model for Europe. I.—Model rationale and implementation. European Journal of Soil Science, 59, 1293–1306.

    CrossRef  Google Scholar 

  • Kosmas, C., Karavitis, C., Kairis, O., Kounalaki, A., Fasouli, V., & Tsesmelis, D. (2012). Using indicators for identifying best land management practices for combating desertification. DESIRE Scientific reports. Deliverable 2.2.3. Agricultural University of Athens.

    Google Scholar 

  • Lambin, E. F., & Ehrlich, D. (1997). Land-cover changes in sub-saharan Africa (1982–1991): Application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sensing of Environment, 61, 181–200.

    CrossRef  Google Scholar 

  • Liniger, H., Schwilch, G., Gurtner, M., Studer, R.M., Hauert, C., van Lynden, G., et al. (2008). WOCAT degradation categorization system. WOCAT—World Overview of Conservation Approaches and Technologies.

    Google Scholar 

  • Lobell, D. B. (2010). Remote sensing of soil degradation: Introduction. Journal of Environmental Quality, 39, 1–4.

    CrossRef  Google Scholar 

  • Martín-Fernández, L., & Martínez-Núñez, M. (2011). An empirical approach to estimate soil erosion risk in Spain. Science of the Total Environment, 409, 3114–3123.

    CrossRef  Google Scholar 

  • Mbow, C., Fensholt, R., Rasmussen, K., & Diop, D. (2013). Can vegetation productivity be derived from greenness in a semi-arid environment? Evidence from ground-based measurements. Journal of Arid Environments, 97, 56–65.

    CrossRef  Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Millennium ecosystem assessment synthesis report. Ecosystems and human well-being: A framework for assessment. Concepts of ecosystem value and validation approaches. Washington, DC: Island Press and World Resources Institute.

    Google Scholar 

  • Milton, S. J., Dean, W. R. J., du Plessis, M., & Siegfried, W. R. (1994). A conceptual model of arid rangeland degradation. Bioscience, 44, 70–76.

    CrossRef  Google Scholar 

  • Mortimore, M. J., & Adams, W. M. (2001). Farmer adaptation, change and ‘crisis’ in the Sahel. Global Environmental Change-Human and Policy Dimensions, 11, 49–57.

    CrossRef  Google Scholar 

  • Mulligan, M. (2015). Computational policy support systems for understanding land degradation effects on water and food security for and from Africa. Land restoration: Reclaiming landscapes for a sustainable future, Elsevier (p. 400). ILLP Publication.

    Google Scholar 

  • Mulligan, M., Burke, S., & Ogilvie, A. (2015). Much more than simply “desertification”: understanding agricultural sustainability and change in the Mediterranean. In R. Benkhe (Ed.), (pp. x–xx). doi:10.1007/978-3-642-16014-1_8. Berlin: Springer.

    Google Scholar 

  • Nachtergaele, F. O. F., & Licona-Manzur, C. (2008). The land degradation assessment in drylands (LADA) project: Reflections on indicators for land degradation assessment. In C. C. Lee & T. Schaaf (Eds.), The future of drylands (pp. 327–348). Rome, Italy: UNESCO, Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Nachtergaele, F. O., Petri, M., Biancalani, R., van Lynden, G., van Velthuizen, H., & Bloise, M. (2011). An Information database for land degradation assessment at global level. In Global land degradation information system (GLADIS).

    Google Scholar 

  • Oldeman, L. R., Hakkeling, R. T. A., & Sombroek, W. G. (1991). World map of the status of human-induced soil degradation: An explanatory note. Global Assessment of Soil Degradation (GLASOD) (2nd ed.). Wageningen Winand Staring Center, International Society for Soil Science, FAO, International Institute for Aerospace Survey and Earth Science.

    Google Scholar 

  • Oldeman, L. R., & van Lynden, G. W. J. (1996). Revisiting the GLASOD methodology. ISRIC report 1996/03. Wageningen: ISRIC World Soil Information.

    Google Scholar 

  • Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., et al. (2001). Terrestrial ecoregions of the world: A new map of life on earth. Bioscience, 51, 933.

    CrossRef  Google Scholar 

  • Olsson, L., Eklundh, L., & Ardö, J. (2005). A recent greening of the Sahel—trends, patterns and potential causes. Journal of Arid Environments, 63, 556–566.

    CrossRef  Google Scholar 

  • ORNL DAAC. (2015). Oak Ridge National Laboratory Distributed Active Archive Center, http://daac.ornl.gov/index.shtml. Accessed February 15, 2015.

  • Petschel-Held, G., Block, A., Cassel-Gintz, M., Kropp, J., Lüdeke, M. K. B., Moldenhauer, O., et al. (1999). Syndromes of global change: A qualitative modelling approach to assist global environmental management. Environmental Modeling and Assessment, 4, 295–314.

    CrossRef  Google Scholar 

  • Pickup, G., & Chewings, V. (1994). A grazing gradient approach to land degradation assessment in arid areas from remotely-sensed data. International Journal of Remote Sensing, 15, 597–617.

    CrossRef  Google Scholar 

  • Prince, S. D. (1991). Satellite remote sensing of primary production: Comparison of results for Sahelian grasslands 1981–1988. International Journal of Remote Sensing, 12, 1301–1311.

    CrossRef  Google Scholar 

  • Prince, S. D. (2002). Spatial and temporal scales of measurement of desertification. In M. Stafford-Smith & J. F. Reynolds (Eds.), Global desertification: Do humans create deserts? (pp. 23–40). Berlin: Dahlem University Press.

    Google Scholar 

  • Prince, S. D., Becker-Reshef, I., & Rishmawi, K. (2009). Detection and mapping of long-term land degradation using local net production scaling: Application to Zimbabwe. Remote Sensing of Environment, 113, 1046–1057.

    CrossRef  Google Scholar 

  • Prince, S. D., De Colstoun, E. B., & Kravitz, L. L. (1998). Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Global Change Biology, 4, 359–374.

    CrossRef  Google Scholar 

  • Reeves, M. C., & Baggett, L. S. (2014). A remote sensing protocol for identifying rangelands with degraded productive capacity. Ecological Indicators, 43, 172–182.

    CrossRef  Google Scholar 

  • Reich, P. F., Numbem, S. T., Almaraz, R. A., & Eswaran, H. (2001). Land resource stresses and desertification in Africa. Responses to Land Degradation. Proceedings of the 2nd International Conference on Land Degradation and Desertification, Khon Kaen, Thailand. New Delhi, India: Oxford Press.

    Google Scholar 

  • Reynolds, J. F., Grainger, A., Stafford Smith, D. M., Bastin, G., Garcia-Barrios, L., Fernández, R. J., et al. (2011). Scientific concepts for an integrated analysis of desertification. Land Degradation and Development, 22, 166–183.

    CrossRef  Google Scholar 

  • Reynolds, J. F., & Stafford Smith, M. (Eds.). (2002). Global desertification: Do humans create deserts? Berlin: Dahlem University Press.

    Google Scholar 

  • Reynolds, J. F., Stafford-Smith, D. M., Lambin, E. F., Turner, B. L, I. I., Mortimore, M., Batterbury, S. P. J., et al. (2007). Global desertification: Building a science for dryland development. Science, 316, 847–851.

    CrossRef  Google Scholar 

  • Rishmawi, K. (2013). Spatial patterns and potential mechanisms of land degradation in the Sahel. Unpublished PhD, University of Maryland.

    Google Scholar 

  • Robinson, T. P., Francescini, G., & Wint, W. (2007). The Food and Agriculture Organization’s gridded livestock of the world. Veterinaria Italiana, 43, 745–751.

    Google Scholar 

  • Romm, J. (2011). The next dustbowl. Nature, 478, 450–451.

    CrossRef  Google Scholar 

  • Safriel, U. (2007). The assessment of global trends in land degradation. In M. V. K. Sivakumar & N. Ndiang’ui (Eds.), Climate and land degradation (pp. 1–38). New York: Springer.

    CrossRef  Google Scholar 

  • Safriel, U. (2009). Deserts and desertification: Challenges but also opportunities. Land Degradation and Development, 20, 353–366.

    CrossRef  Google Scholar 

  • Scherr, S. J., & Yadav, S. (1996). Land degradation in the developing world: Implications for food, agriculture, and the environment to 2020. In Food, agriculture, and the environment. International Food Policy Research Institute.

    Google Scholar 

  • Seaquist, J. W., Hickler, T., Eklundh, L., Ardo, J., & Heumann, B. W. (2009). Disentangling the effects of climate and people on Sahel vegetation dynamics. Biogeosciences, 6(3), 469–477.

    CrossRef  Google Scholar 

  • SEDAC. (2015). Socioeconomic Data and Applications Center, http://sedac.ciesin.columbia.edu/about. Accessed February 15, 2015.

  • Sietz, D., Untied, B., Walkenhorst, O., Ludeke, M. K. B., Mertins, G., Petschel-Held, G., & Schellnhuber, H. J. (2006). Smallholder agriculture in Northeast Brazil: Assessing heterogeneous human-environmental dynamics. Regional Environmental Change, 6, 132–146.

    CrossRef  Google Scholar 

  • Singh, G., Bundela, D. S., Sethi, M., Lal, K., & Kamra, S. K. (2010). Remote sensing and geographic information system for appraisal of salt-affected soils in India. Journal of Environmental Quality, 39, 5–15.

    CrossRef  Google Scholar 

  • Sonneveld, B. G., & Dent, D. L. (2009). How good is GLASOD? Journal of Environmental Management, 90, 274–283.

    CrossRef  Google Scholar 

  • Symeonakis, E., & Drake, N. (2004). Monitoring desertification and land degradation over sub-Saharan Africa. International Journal of Remote Sensing, 25, 573–592.

    CrossRef  Google Scholar 

  • Tamene, L., & Le, Q. B. (2015). Estimating soil erosion in sub-Saharan Africa based on landscape similarity mapping and using the revised universal soil loss equation (RUSLE). Nutrient Cycling in Agroecosystems, 101, 1–15. doi:10.1007/s10705-10015-19674-10709.

    CrossRef  Google Scholar 

  • Thomas, D. S. G., & Middleton, N. J. (1993). Salinization: new perspectives on a major desertification issue. Journal of Arid Environments, 24, 95–105.

    CrossRef  Google Scholar 

  • Trabucco, A., & Zomer, R. J. (2009). Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database. Published online, available from the CGIAR-CSI GeoPortal at: http://www.csi.cgiar.org

  • Tucker, C. J., Dregne, H. E., & Newcomb, W. W. (1991). Expansion and contraction of the Sahara desert from 1980 to 1990. Science, 253, 299–301.

    CrossRef  Google Scholar 

  • Tucker, C. J., Justice, C. O., & Prince, S. D. (1986). Monitoring the grasslands of the Sahel 1984–1985. International Journal of Remote Sensing, 7, 1571–1581.

    CrossRef  Google Scholar 

  • Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., et al. (2005). An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26, 4485–4498.

    CrossRef  Google Scholar 

  • UNCCD. (1994). Elaboration of an international convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa (p. 58). United Nations General Assembly, 93rd plenary meeting, New York.

    Google Scholar 

  • UNCED. (1992). Managing fragile ecosystems: combating desertification and drought. In Agenda 21: Earth summit. Rio de Janerio: United Nations Conference on Environment and Development.

    Google Scholar 

  • UNEP. (1997). World Atlas of Desertification. (2nd ed.). London, New York: Arnold & Wiley, on behalf of UNEP.

    Google Scholar 

  • UNEP. (2015). United Nations Environment Programme, http://www.unep.org/. Accessed February 7, 2015.

  • United Nations General Assembly. (2013). Future we want—Outcome document. In Resolution adopted by the General Assembly. United Nations Department of Economic and Social Affairs (DESA).

    Google Scholar 

  • USGS. (2015). The Land Processes Distributed Active Archive Center (LP DAAC), https://lpdaac.usgs.gov/. Accessed February 7, 2015.

  • Ustin, S. L., Palacios-Orueta, A., Whiting, M. L., Jacquemoud, S., & Li, L. (2009). Remote sensing based assessment of biophysical indicators for land degradation and deserlification. In R. Hill (Ed.), Recent advances in remote sensing and geoinformation processing for land degradation assessment (pp. 15–44). London: Taylor & Francis Group.

    Google Scholar 

  • Verón, S. R., Paruelo, J. M., & Oesterheld, M. (2006). Assessing desertification. Journal of Arid Environments, 66, 751–763.

    CrossRef  Google Scholar 

  • Vogt, J. V., Safriel, U., Von Maltitz, G., Sokona, Y., Zougmore, R., Bastin, G., & Hill, J. (2011). Monitoring and assessment of land degradation and desertification: Towards new conceptual and integrated approaches. Land Degradation and Development, 22, 150–165.

    CrossRef  Google Scholar 

  • Warren, A. (2002). Land degradation is contextual. Land Degradation and Development, 13, 449–459.

    CrossRef  Google Scholar 

  • Wessels, K. J. (2009). Comments on ‘Proxy global assessment of land degradation’ by Bai et al. (2008). Soil Use and Management, 25, 91–92.

    Google Scholar 

  • Wessels, K. J., Prince, S. D., Carroll, M., & Malherbe, J. (2007a). Relevance of rangeland degradation in semiarid northeastern South Africa to the nonequilibrium theory. Ecological Applications, 17, 815–827.

    CrossRef  Google Scholar 

  • Wessels, K. J., Prince, S. D., Malherbe, J., Small, J., Frost, P. E., & VanZyl, D. (2007b). Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. Journal of Arid Environments, 68, 271–297.

    CrossRef  Google Scholar 

  • Wessels, K. J., Prince, S. D., & Reshef, I. (2008). Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production. Journal of Arid Environments, 72, 1940–1949.

    CrossRef  Google Scholar 

  • Wessels, K. J., van den Bergh, F., & Scholes, R. J. (2012). Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sensing of Environment, 125, 10–22.

    CrossRef  Google Scholar 

  • Whitlow, R. (1988). Land degradation in Zimbabwe. Harare: Department of Natural Resources, Government of Zimbabwe/Department of Geography, University of Zimbabwe.

    Google Scholar 

  • Wildlife Conservation Society (WCS) and Center for International Earth Science Information Network (CIESIN). (2005). Last of the Wild Project, (LWP-2): Global Human Influence Index (HII) Dataset. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC), Columbia University.

    Google Scholar 

  • Zika, M., & Erb, K. H. (2009). The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecological Economics, 69(2), 310–318.

    CrossRef  Google Scholar 

  • Zucca, C., & Biancalani, R. (2011). Guidelines for the use of the LADA QM DB in the frame of the “National Piloting of provisional UNCCD impact indicators” (p. 24), LADA FAO.

    Google Scholar 

  • Zucca, C., Della Peruta, R., Salvia, R., Sommer, S., & Cherlet, M. (2012). Towards a world desertification atlas. Relating and selecting indicators and data sets to represent complex issues. Ecological Indicators, 2012, 157–170.

    CrossRef  Google Scholar 

Download references

Acknowledgments

Dr. K. Rishmawi, Jeremy Stanfield and Hasan Jackson assisted with the map comparisons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Prince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prince, S.D. (2016). Where Does Desertification Occur? Mapping Dryland Degradation at Regional to Global Scales. In: Behnke, R., Mortimore, M. (eds) The End of Desertification? . Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16014-1_9

Download citation