Skip to main content

40 Years of Climate Modeling: The Causes of Late-20th Century Drought in the Sahel

Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

This chapter reviews the evolution of our understanding of the causes of the late 20th century Sahel drought in the context of global climate model development. In describing, in coherent and holistic fashion, physical arguments for local and global influences on regional rainfall variability and change, it aims to make sense of current trends and future projections in the context of the recent past.

Keywords

  • Sahel
  • Drought
  • Climate modeling
  • Seasonal prediction
  • Climate change
  • Attribution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-16014-1_10
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-16014-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4

Notes

  1. 1.

    For definitions of drought—meteorological, hydrological, agricultural—the reader is referred e.g. to Glantz (1994) and Wilhite (2001). Here drought is synonymous with deficient, or below-average rainfall, where the average is computed on a sufficiently long period, with 30 years being the standard implemented by the UN World Meteorological Organization.

  2. 2.

    Moist air is lighter than dry air, because a molecule of water vapor is lighter than a molecule of nitrogen or oxygen, the most prevalent constituents of the Earth’s atmosphere.

  3. 3.

    The troposphere is the layer of atmosphere closest to the surface, where all human activity takes place. It is ~15 km deep in the tropics and ~10 km deep at high latitudes, and contains 90 % of the atmosphere’s mass.

  4. 4.

    The albedo is the reflectivity of the Earth’s surface to solar radiation. It is a unitless number between 0 and 1. Surfaces that reflect a high proportion of the incoming insolation have high albedo.

  5. 5.

    In this general class of models, also known as GCMs, for “general circulation models” or “global climate models”, the surface of the Earth is divided into squares, or grid boxes, of dimensions currently of the order of ~100 km. In each grid box the evolution of the atmosphere only, initially, and of the coupled ocean-atmosphere system, more recently, is derived from the equations of motion—the motion of fluids, the atmosphere and ocean, on a rotating sphere heated by an external source of energy. In the atmosphere only case, the surface temperature of the oceans is prescribed, either to monthly climatological values, or to monthly varying values derived from observations [or from seasonal predictions], while the exchange between land surface and atmosphere is described by empirical relations referred to as parameterizations. In the simplest coupled ocean-atmosphere case, the sole external source of energy is the sun, insolation at the top of the atmosphere is kept constant in time, and the system is let to adjust to the spatial variation in heating that derives from the planet’s own geometry and rotation around its axis, and that of its revolution around the sun. The circulations that ensue in the atmosphere and oceans are manifestations of the inherent “internal” variability in the system as it redistributes heat from warmer to cooler regions.

References

  • Ackerley, D., Booth, B. B. B., Knight, S. H. E., Highwood, E. J., Frame, D. J., Allen, M. R., & Rowell, D. P. (2011). Sensitivity of 20th century Sahel rainfall to sulfate aerosol and CO2 forcing. Journal of Climate, 24, 4999–5014.

    CrossRef  Google Scholar 

  • Ali, A., & Lebel, T. (2009). The Sahelian standardized rainfall index revisited. International Journal of Climatology, 29, 1705–1714.

    CrossRef  Google Scholar 

  • Bacmeister, J. T., Pegion, P. J., Schubert, S. D., & Suarez, M. J. (2000). Atlas of seasonal means simulated by the NSIPP1 atmospheric GCM. NASA Tech. Memo-2000-104606. 100 pp

    Google Scholar 

  • Bader, J., & Latif, M. (2003). The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophysical Research Letters, 30, 2169. doi:10.1029/2003GL018426.

    CrossRef  Google Scholar 

  • Barnett, T. P., Pierce, D. W., AchutaRao, K. M., Gleicker, P. J., Santer, B. D., Gregory, J. M., & Washington, W. M. (2005). Penetration of human-induced warming into the world’s oceans. Science, 309, 284–287.

    CrossRef  Google Scholar 

  • Biasutti, M. (2013). Forced Sahel rainfall trends in the CMIP5 archive. Journal of Geophysical Research, 118, 1613–1623.

    Google Scholar 

  • Biasutti, M., & Giannini, A. (2006). Robust Sahel drying in response to late 20th century forcings. Geophysical Research Letters, 33, L11706. doi:10.1029/2006GL026067.

    CrossRef  Google Scholar 

  • Biasutti, M., & Sobel, A. H. (2009). Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophysical Research Letters, 36, L23707. doi:10.1029/2009GL041303.

    CrossRef  Google Scholar 

  • Biasutti, M., Held, I. M., Sobel, A. H., & Giannini, A. (2008). SST forcings and Sahel rainfall variability in simulations of 20th and 21st centuries. Journal of Climate, 21, 3471–3486.

    CrossRef  Google Scholar 

  • Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97, 163–172.

    CrossRef  Google Scholar 

  • Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., & Bellouin, N. (2012). Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232.

    CrossRef  Google Scholar 

  • Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., et al. (2007a). Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial maximum part 1: Experiments and large-scale features. Climate of the Past, 3, 261–277.

    CrossRef  Google Scholar 

  • Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., et al. (2007b). Results of PMIP2 coupled simulations of the Mid-Holocene and last Glacial maximum part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate of the Past, 3, 279–296.

    CrossRef  Google Scholar 

  • Brooks, N. (2004). Drought in the African Sahel: Long term perspectives and future prospects. Tyndall Centre for Climate Change Research, Working paper 61.

    Google Scholar 

  • Bullock, P., Le Houérou, H., Hoffman, M. T., Rounsevell, M., Sehgal, J., & Várallyay, G. (1995). Land degradation and desertification. Vol. Climate change 1995. Impacts, adaptation and mitigation of climate change: scientific-technical analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. (chapter 4).

    Google Scholar 

  • Caminade, C., & Terray, L. (2010). Twentieth century Sahel rainfall variability as simulated by the ARPEGE GCM, and future changes. Climate Dynamics, 35, 75–94.

    CrossRef  Google Scholar 

  • Cane, M. A., Zebiak, S. E., & Dolan, S. C. (1986). Experimental forecasts of El Niño. Nature, 321, 827–832.

    CrossRef  Google Scholar 

  • Cane, M. A. (1991) Forecasting El Niño with a geophysical model. pp. 345–369. In M. H. Glantz (Ed.), Teleconnections linking worldwide climate anomalies (pp. 345–369). Cambridge: Cambridge University Press.

    Google Scholar 

  • Chang, C.-Y., Chiang, J. C. H., Wehner, M. F., Friedman, A., & Ruedy, R. (2011). Sulfate aerosol control of tropical Atlantic climate over the 20th century. Journal of Climate, 24, 2540–2555.

    CrossRef  Google Scholar 

  • Charney, J. G., Stone, P. H., & Quirk, W. J. (1975). Drought in the Sahara: A biogeophysical feedback mechanism. Science, 187, 434–435.

    CrossRef  Google Scholar 

  • Charney, J., Quirk, W. J., Chow, S.-H., & Kornfeld, J. (1977). A comparative study of the effects of albedo change on drought in semi-arid regions. Journal of the Atmospheric Sciences, 34, 1366–1385.

    CrossRef  Google Scholar 

  • Chiang, J. C. H., & Sobel, A. H. (2002). Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. Journal of Climate, 15, 2616–2631.

    CrossRef  Google Scholar 

  • Chiang, J. C. H., Chang, C.-Y., & Wehner, M. F. (2013). Long-term behavior of the Atlantic interhemispheric SST gradient in the CMIP5 historical simulations. Journal of Climate, 26, 8628–8640.

    CrossRef  Google Scholar 

  • Chou, C., & Neelin, J. D. (2004). Mechanisms of global warming impacts on regional tropical precipitation. Journal of Climate, 17, 2688–2701.

    CrossRef  Google Scholar 

  • Chou, C., Neelin, J. D., & Su, H. (2001). Ocean-atmosphere-land feedbacks in an idealized monsoon. Quarterly Journal of the Royal Meteorological Society, 127, 1869–1891.

    CrossRef  Google Scholar 

  • Cook, K. H., & Vizy, E. K. (2006). Coupled model simulations of the West African monsoon system: 20th century simulations and 21st century predictions. Journal of Climate, 19, 3681–3703.

    CrossRef  Google Scholar 

  • Cour, J. -M., & Snrech, S. (1998). Preparing for the future: A vision of West Africa in the year 2020. West Africa long-term perspective study. Sahel and West Africa Club, Organisation for Economic Cooperation and Development, Paris.

    Google Scholar 

  • Dai, A., Lamb, P. J., Trenberth, K. E., Hulme, M., Jones, P. D., & Xie, P. (2004). The recent Sahel drought is real. International Journal of Climatology, 24, 1323–1331.

    CrossRef  Google Scholar 

  • de Menocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., & Yarusinskya, M. (2000). Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quaternary science reviews, 19, 347–361.

    CrossRef  Google Scholar 

  • Diedhiou, A., & Mahfouf, J. -F. (1996). Comparative influence of land and sea surfaces on the Sahelian drought: A numerical study. Annales Geophysicae, 14, 115–130.

    Google Scholar 

  • Douville, H. (2002). Influence of soil moisture on the Asian and African monsoons. Part II: Interannual variability. Journal of Climate, 15, 701–720.

    CrossRef  Google Scholar 

  • Douville, H., Chauvin, F., & Broqua, H. (2001). Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. Journal of Climate, 14, 2381–2403.

    CrossRef  Google Scholar 

  • Douville, H., Salas-Melia, D., & Tyteca, S. (2006). On the tropical origin of uncertainties in the global land precipitation response to global warming. Climate Dynamics, 26, 367–385.

    CrossRef  Google Scholar 

  • Du, Y., & Xie, S.-P. (2008). Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophysical Research Letters, 35, L08712. doi:10.1029/2008GL033631.

    CrossRef  Google Scholar 

  • Ehrlich, P. R. (1968). The population bomb (pp. 223). New York: Ballantine Books.


    Google Scholar 

  • Eltahir, E. A. B., & Gong, C. (1996). Dynamics of wet and dry years in West Africa. Journal of Climate, 9, 1030–1042.

    CrossRef  Google Scholar 

  • Emanuel, K. A., Neelin, J. D., & Bretherton, C. S. (1994). On large-scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120, 1111–1143.

    CrossRef  Google Scholar 

  • Enfield, D., & Mestas-Nuñez, A. (1999). Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. Journal of Climate, 12, 2719–2733.

    CrossRef  Google Scholar 

  • Findell, K. L., Pitman, A. J., England, M. H., & Pegion, P. J. (2009). Regional and global impacts of land cover change and sea surface temperature anomalies. Journal of Climate, 22, 3248–3269.

    CrossRef  Google Scholar 

  • Folland, C. K., Palmer, T. N., & Parker, D. E. (1986). Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602–607.

    CrossRef  Google Scholar 

  • Fontaine, B., Trzaska, S., & Janicot, S. (1998). Evolution of the relationship between near global and Atlantic SST modes and the rainy season in West Africa: Statistical analyses and sensitivity experiments. Climate Dynamics, 14, 353–368.

    CrossRef  Google Scholar 

  • Funk, C., Dettinger, M., Michaelsen, J., Verdin, J., Brown, M., Barlow, M., & Hoell, A. (2008). Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proceedings of the National Academy of Sciences, 105, 11081–11086. doi:10.1073/pnas.0708196105.

    CrossRef  Google Scholar 

  • Gasse, F. (2000). Hydrological changes in the African tropics since the Last Glacial maximum. Quaternary Science Reviews, 19, 189–211.

    CrossRef  Google Scholar 

  • Gasse, F., Tehet, R., Durand, A., Gibert, E., & Fontes, J.-C. (1990). The arid-humid transition in the Sahara and the Sahel during the last deglaciation. Nature, 346, 141–146.

    CrossRef  Google Scholar 

  • Giannini, A., Salack, S., Lodoun, T., Ali, A., Gaye, A. T., & Ndiaye, O. (2013). A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environmantal Research Letters, 8, 024010.

    CrossRef  Google Scholar 

  • Giannini, A., Saravanan, R., & Chang, P. (2003). Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 1027–1030. doi:10.1126/science.1089357.

    CrossRef  Google Scholar 

  • Giannini, A., Saravanan, R., & Chang, P. (2005). Dynamics of the boreal summer African monsoon in the NSIPP1 atmospheric model. Climate Dynamics, 25, 517–535. doi:10.1007/s00382005-0056-x.

    CrossRef  Google Scholar 

  • Glantz, M. H. (1994). Drought follows the plow: Cultivating marginal areas. Cambridge: Cambridge University Press.

    Google Scholar 

  • Govaerts, Y., & Lattanzio, A. (2008). Estimation of surface albedo increase during the eighties Sahel drought from Meteosat observations. Global and Planetary Change, 64, 139–145.

    CrossRef  Google Scholar 

  • Greene, A. M., Giannini, A., & Zebiak, S. E. (2009). Drought return times in the Sahel: A question of attribution. Geophysical Research Letters, 36, L12701. doi:10.1029/2009GL038868.

    CrossRef  Google Scholar 

  • Hagos, S., & Cook, K. H. (2008). Ocean warming and late 20th century recovery. Journal of Climate, 21, 3797–3811. doi:10.1175/2008JCLI2055.1.

    CrossRef  Google Scholar 

  • Hastenrath, S., & Lamb, P. J. (1977). Some aspects of circulation and climate over the eastern equatorial Atlantic. Monthly Weather Review, 105, 1019–1023.

    CrossRef  Google Scholar 

  • Hegerl, G., Zwiers, F., Braconnot, P., Gillett, N., Luo, Y., Marengo Orsini, J., Nicholls, N., Penner, J. E., & Stott, P. (2007). Understanding and attributing climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Held, I., & Soden, B. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19, 5686–5699.

    CrossRef  Google Scholar 

  • Held, I. M., Delworth, T. L., Lu, J., Findell, K., & Knutson, T. R. (2005). Simulation of Sahel drought in the 20th and 21st centuries. Proceedings of the National Academy of Sciences of the United States of America, 102, 17891–17896. doi:10.1073/pnas.0509057102.

    CrossRef  Google Scholar 

  • Hourdin, F., Musat, I., Guichard, F., Ruti, P. M., Favot, F., Filiberti, M.-A., et al. (2010). AMMA-Model intercomparison project. Bulletin of the American Meteorological Society, 91, 95–104.

    CrossRef  Google Scholar 

  • Hulme, M. (2001). Climatic perspectives on Sahelian dessication: 1973–1998. Global Environmental Change, 11, 19–29.

    CrossRef  Google Scholar 

  • Hurrell, J. W., & Co-authors. (2006). Atlantic climate variability and predictability: A CLIVAR perspective. Journal of Climate, 19, 5100–5121.

    Google Scholar 

  • Intergovernmental Panel on Climate Change. (2007) Climate Change 2007 Synthesis Report. Available at: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf.

  • Intergovernmental Panel on Climate Change. (2014). Climate Change 2014 Synthesis Report. Available at: http://www.ipcc.ch/pdf/assessmentreport/ar5/syr/SYR_AR5_SPMcorr1.pdf.

  • Joly, M., Voldoire, A., Douville, H., Terray, P., & Royer, J.-F. (2007). African monsoon teleconnections with tropical SSTs: Validation and evolution in a set of IPCC4 simulations. Climate Dynamics, 29, 1–20.

    CrossRef  Google Scholar 

  • Kang, S. M., Frierson, D. M. W., & Held, I. M. (2009). The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. Journal of the Atmospheric Sciences, 66, 2812–2827.

    CrossRef  Google Scholar 

  • Katz, R. W., & Glantz, M. H. (1986). Anatomy of a rainfall index. Monthly Weather Review, 114, 764–771.

    CrossRef  Google Scholar 

  • Kerr, R. A. (2003). Warming Indian Ocean wringing moisture from the Sahel. Science, 302, 210–211.

    CrossRef  Google Scholar 

  • Knight, J. R., Folland, C. K., & Scaife, A. A. (2006). Climate impacts of the Atlantic multi- decadal oscillation. Geophysical Research Letters, 33, L17706. doi:10.1029/2006GL026242.

    CrossRef  Google Scholar 

  • Koster, R. D., Suarez, M. J., & Schubert, S. D. (2006). Distinct hydrological signatures in observed historical temperature fields. Journal of Hydrometeorology, 7, 1061–1075.

    CrossRef  Google Scholar 

  • Koster, R. D., Suarez, M. J., Higgins, R. W., & Van den Dool, H. M. (2003). Observational evidence that soil moisture variations affect precipitation. Geophysical Research Letters. doi:10.1029/2002GL016571.

    Google Scholar 

  • Kushnir, Y. (1994). Interdecadal variations in the North Atlantic sea surface temperature and associated atmospheric conditions. Journal of Climate, 7, 141–157.

    CrossRef  Google Scholar 

  • Kutzbach, J. E., & Liu, Z. (1997). Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science, 278, 440–443.

    CrossRef  Google Scholar 

  • Lamb, P. J. (1978a). Case studies of tropical Atlantic surface circulation patterns during recent sub-Saharan weather anomalies: 1967 and 1968. Monthly Weather Review, 106, 482–491.

    CrossRef  Google Scholar 

  • Lamb, P. J. (1978b). Large-scale tropical Atlantic surface circulation patterns associated with sub-Saharan weather anomalies. Tellus, 30, 240–251.

    CrossRef  Google Scholar 

  • Lamb, P. J. (1982). Persistence of Sub-Saharan drought. Nature, 299, 46–48.


    Google Scholar 

  • Lamb, P. J., & Peppler, R. A. (1992). Further case studies of tropical Atlantic surface atmospheric and oceanic patterns associated with sub-Saharan drought. Journal of Climate, 5, 476–488.

    CrossRef  Google Scholar 

  • Laval, K., & Picon, L. (1986). Effect of a change of the surface albedo of the Sahel on climate. Journal of the Atmospheric Sciences, 43, 2418–2429.

    CrossRef  Google Scholar 

  • Leach, M., & Mearns, R. (1996). The lie of the land: Challenging received wisdom on the African environment. Oxford: James Currey, Ltd.

    Google Scholar 

  • Lebel, T., Diedhiou, A., & Laurent, H. (2003). Seasonal cycle and interannual variability of the Sahelian rainfall at hydrological scales. Journal of Geophysical Research,. doi:10.1029/2001JD001580.

    Google Scholar 

  • Le Treut, H., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T., & Prather, M. (2007). Historical overview of climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Liepert, B. G. (2002). Observed reductions in surface solar radiation in the United States and worldwide from 1961 to 1990. Geophys: Research Letters. doi:10.1029/2002GL014910.

    Google Scholar 

  • Lindzen, R. S., & Nigam, S. (1987). On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. Journal of the Atmospheric Science, 44, 2418–2436.

    CrossRef  Google Scholar 

  • Lodoun, T., Giannini, A., Traoré, P. S., Somé, L., Sanon, M. M. V., & Millogo-Rasolodimby, J. (2013). Changes in the character of precipitation in Burkina Faso associated with late-20th century drought and recovery in the Sahel. Environmental Development, 5, 96–108.

    CrossRef  Google Scholar 

  • Losada, T., Rodríguez-Fonseca, B., Polo, I., Janicot, S., Gervois, S., Chauvin, F., & Ruti, P. (2010). Tropical response to the Atlantic equatorial mode: AGCM multi-model approach. Climate Dynamics, 35, 45–52.

    CrossRef  Google Scholar 

  • Lu, J. (2009). The dynamics of the Indian Ocean sea surface temperature forcing of Sahel drought. Climate Dynamics, 33, 445–460. doi:10.1007/s00382-009-0596-6.

    CrossRef  Google Scholar 

  • Lu, J., & Delworth, T. L. (2005). Oceanic forcing of late 20th century Sahel drought. Geophysical Research Letters, 32, L22706. doi:10.1029/2005GL023316.

    CrossRef  Google Scholar 

  • Lyon, B. (2004). The strength of El Niño and the spatial extent of tropical drought. Geophysical Research Letters, 31, L21204. doi:10.1029/2004GL020901.

    CrossRef  Google Scholar 

  • Mann, M. E., & Emanuel, K. A. (2006). Atlantic hurricane trends linked to climate change. EOS, 87, 233–244.

    CrossRef  Google Scholar 

  • Maynard, K., & Polcher, J. (2003). Impact of land-surface processes on the interannual variability of tropical climate in the LMD GCM. Climate Dynamics, 20, 613–633.

    Google Scholar 

  • Meadows, D. H., Randers, J., & Behrens, W. W, I. I. I. (1972). The limits to growth: A report to the club of Rome (1972). New York: Universe Books.

    Google Scholar 

  • Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., et al. (2007). The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bulletin of the American Meteorological Society, 88, 1383–1394.

    CrossRef  Google Scholar 

  • Moura, A. D., & Shukla, J. (1981). On the dynamics of droughts in northeast Brazil: Observations, theory and numerical experiments with a general circulation model. Journal of the Atmospheric Sciences, 38, 2653–2675.

    CrossRef  Google Scholar 

  • Neelin, J. D. (2007). Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. In T. Schneider & A. H. Sobel (Eds.), The global circulation of the atmosphere (pp. 267–301). Princeton: Princeton University Press. (chapter 10).

    Google Scholar 

  • Neelin, J. D., Chou, C., & Su, H. (2003). Tropical drought regions in global warming and El Niño teleconnections. Geophysical Research Letters, 30, 2275. doi:10.1029/2003GL0018625.

    CrossRef  Google Scholar 

  • Neelin, J. D., Munnich, M., Su, H., Meyerson, J. E., & Holloway, C. E. (2006). Tropical drying trends in global warming models and observations. Proceedings of the National Academy of Sciences, 103, 6110–6115.

    CrossRef  Google Scholar 

  • Newell, R. E., & Kidson, J. W. (1984). African mean wind changes between Sahelian wet and dry periods. Journal of Climatology, 4, 27–33.

    CrossRef  Google Scholar 

  • Nicholson, S. E. (1979). Revised rainfall series for the West African subtropics. Monthly Weather Review, 107, 620–623.

    CrossRef  Google Scholar 

  • Nicholson, S. E. (1980). The nature of rainfall fluctuations in subtropical West Africa. Monthly Weather Review, 108, 473–487.

    CrossRef  Google Scholar 

  • Nicholson, S. E. (1981). Rainfall and atmospheric circulation during drought periods and wetter years in West Africa. Monthly Weather Review, 109, 2191–2208.

    CrossRef  Google Scholar 

  • Nicholson, S. E. (1983). Sub-Saharan rainfall in the years 1976–1980: Evidence of continued drought. Monthly Weather Review, 111, 1646–1654.

    CrossRef  Google Scholar 

  • Nicholson, S. E. (2000a). Land surface processes and Sahel climate. Review of Geophysics, 38, 117–139.

    CrossRef  Google Scholar 

  • Nicholson, S. E. (2000b). The nature of rainfall variability over Africa on time scales of decades to millennia. Global and Planetary Change, 26, 137–158.

    CrossRef  Google Scholar 

  • Nicholson, S. E. (2005). On the question of the “recovery” of the rains in the West African Sahel. Journal of Arid Environments, 63, 615–641.

    CrossRef  Google Scholar 

  • Nicholson, S. E. (2013) The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorology, 453521, 32.

    Google Scholar 

  • Owen, J., & Folland, C. K. (1988). Modelling the influence of sea surface temperatures on tropical rainfall. In S. Gregory (Ed.), Recent climate change—a regional approach. London: Belhaven Press.

    Google Scholar 

  • Palmer, T. N. (1986). Influence of the Atlantic, Pacific and Indian Oceans on Sahel rainfall. Nature, 322, 251–253.

    CrossRef  Google Scholar 

  • Patricola, C. M., & Cook, K. H. (2007). Dynamics of the West African monsoon under mid- Holocene precessional forcing: Regional climate model simulations. Journal of Climate, 20, 694–716.

    CrossRef  Google Scholar 

  • Petit-Maire, N. (2002). Sous le sable … des lacs. Un voyage dans le temps. Paris: CNRS Editions.

    Google Scholar 

  • Polcher, J. (1995). Sensitivity of tropical convection to land surface processes. Journal of the Atmospheric Science, 52, 3143–3161.

    CrossRef  Google Scholar 

  • Polvani, L. M., & Sobel, A. H. (2002). The Hadley circulation and the weak temperature gradient approximation. Journal of the Atmospheric Science, 59, 1744–1752.

    CrossRef  Google Scholar 

  • Pu, B., & Cook, K. H. (2010). Dynamics of the West African westerly jet. Journal of Climate, 23(23), 6263–6276.

    Google Scholar 

  • Raynaut, C. (1997). Societies and nature in the Sahel: rethinking environmental degradation (pp. xxiii, 351). UK: Routledge/SEI Global Environment and Development Series.

    Google Scholar 

  • Rodríguez-Fonseca, B., Janicot, S., Mohino, E., Losada, T., Bader, J., Caminade, C., & Voldoire, A. (2011). Interannual and decadal SST‐forced responses of the West African monsoon. Atmospheric Science Letters, 12(1), 67–74.

    Google Scholar 

  • Rotstayn, L., & Lohmann, U. (2002). Tropical rainfall trends and the indirect aerosol effect. Journal of Climate, 15, 2103–2116.

    CrossRef  Google Scholar 

  • Rowell, D. P. (2013). Simulating SST teleconnections to Africa: What is the state of the art? Journal of Climate, 26, 5397–5418.

    CrossRef  Google Scholar 

  • Rowell, D. P., Folland, C. K., Maskell, K., & Ward, M. N. (1995). Variability of summer rainfall over tropical North Africa (1906–92): Observations and modeling. Quarterly Journal of the Royal Meteorological Society, 122, 669–704.

    Google Scholar 

  • Ruti, P. M., Williams, J. E., Hourdin, F., Guichard, F., Boone, A., Van Velthoven, P., et al. (2011). The West African climate system: A review of the AMMA model inter-comparison initiatives. Atmospheric Science Letters, 12, 116–122.

    CrossRef  Google Scholar 

  • Salack, S., Muller, B., & Gaye, A. T. (2011). Rain-based factors of high agricultural impacts over Senegal. Part I: Integration of local to sub-regional trends and variability. Theoretical and Applied Climatology, 106, 1–22.

    CrossRef  Google Scholar 

  • Scaife, A. A., Kucharski, F., Folland, C. K., Kinter, J., Brônniman, S., Fereday, D., et al. (2009). The CLIVAR C20C project: Selected twentieth century climate events. Climate Dynamics, 33, 603–614. doi:10.1007/s00382-008-0451-1.

    CrossRef  Google Scholar 

  • Schneider, S. H., & Dickinson, R. E. (1974). Climate modeling. Review of Geophysics, 12, 447–493.

    CrossRef  Google Scholar 

  • Seth, A., Rauscher, S. A., Biasutti, M., Giannini, A., Camargo, S. J., & Rojas, M. (2013). CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. Journal of Climate, 26, 7328–7351.

    CrossRef  Google Scholar 

  • Seth, A., Rauscher, S. A., Rojas, M., Giannini, A., & Camargo, S. J. (2011). Enhanced spring convective barrier for monsoons in a warmer world? A letter. Climate Change, 104, 403–414.

    CrossRef  Google Scholar 

  • Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., Beck, J. W., Cole, J. E., Dettman, D. L., et al. (2009). Atlantic forcing of persistent drought in West Africa. Science, 324, 377–380.

    CrossRef  Google Scholar 

  • Shinoda, M., & Kawamura, R. (1994). Tropical rainbelt, circulation, and sea surface temperatures associated with the Sahelian rainfall trend. Journal of the Meteorological Society of Japan, 72, 341–357.

    Google Scholar 

  • Sobel, A. H. (2007). Simple models of ensemble-averaged tropical precipitation and surface wind, given the sea surface temperature. In T. Schneider & A. H. Sobel (Eds.), The global circulation of the atmosphere (pp. 219–251). Princeton : Princeton University Press (chapter 8).

    Google Scholar 

  • Sobel, A. H. (2010). Raised bar for rain. Nature Geoscience, 3, 821–822.

    CrossRef  Google Scholar 

  • Somerville, R. C. J., Stone, P. H., Halem, M., Hansen, J. E., Hogan, J. S., Druyan, L. M., et al. (1974). The GISS model of the global atmosphere. Journal of the Atmospheric Sciences, 31, 84–117.

    CrossRef  Google Scholar 

  • Stanhill, G., & Cohen, S. (2001). Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology, 107, 255–278.

    CrossRef  Google Scholar 

  • Stephenne, N., & Lambin, E. F. (2001). A dynamic simulation model of land-use changes in Sudano-Sahelian countries of Africa (SALU). Agriculture Ecosystems and Environment, 85, 145–161.

    CrossRef  Google Scholar 

  • Stott, P. A., Mitchell, J. F. B., Allen, M. R., Delworth, T. L., Gregory, J. M., Meehl, G. A., & Santer, B. D. (2006). Observational constraints on past attributable warming and predictions of future global warming. Journal of Climate, 19, 3055–3069.

    CrossRef  Google Scholar 

  • Sud, Y. C., & Fennessy, M. (1982). Study of the influence of surface albedo on July circulation in semiarid regions using the GLAS GCM. Journal of Climatology, 2, 105–125.

    CrossRef  Google Scholar 

  • Sud, Y. C., & Lau, K.-M. (1996). Comments on ’Variability of summer rainfall over tropical north Africa (1906-92): observations and modelling’ by D. P. Rowell, C. K. Folland, K. Maskell and M. N. Ward (April A, 1995, 121, 669-704). Quarterly Journal of the Royal Meteorological Society, 122, 1001–1006.

    Google Scholar 

  • Sugi, M., & Yoshimura, J. (2004). A mechanism of tropical precipitation change due to CO2 increase. Journal of Climate, 17, 238–243.

    CrossRef  Google Scholar 

  • Taylor, C. M., Lambin, E. F., Stephenne, N., Harding, R. J., & Essery, R. L. H. (2002). The influence of land use change on climate in the Sahel. Journal of Climate, 15, 3615–3629.

    CrossRef  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485–498.

    CrossRef  Google Scholar 

  • Ting, M., Kushnir, Y., Seager, R., & Li, C. (2009). Forced and internal 20th century SST trends in the North Atlantic. Journal of Climate, 22, 1469–1481.

    CrossRef  Google Scholar 

  • Trenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003). The changing character of precipitation. Bulletin of the American Meteorological Society, 84, 1205–1217.

    CrossRef  Google Scholar 

  • Trenberth, K., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B., & Zhai, P. (2007). Observations: Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth as- sessment report of the intergovernmental panel on climate change (pp. 235–336). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Vecchi, G. A., Swanson, K. L., & Soden, B. J. (2008). Whither hurricane activity? Science, 322, 687–689.

    CrossRef  Google Scholar 

  • Vizy, E. K., & Cook, K. H. (2001). Mechanisms by which Gulf of Guinea and eastern North Atlantic sea surface temperature anomalies can influence African rainfall. Journal of Climate, 14, 795–821.

    CrossRef  Google Scholar 

  • Vizy, E. K., & Cook, K. H. (2002). Development and application of a mesoscale climate model for the tropics: Influence of sea surface temperature anomalies on the West African monsoon. Journal of Geophysical Research Atmospheres,. doi:10.1029/2001JD000686.

    Google Scholar 

  • West, C. T., Roncoli, C., & Ouattara, F. (2008). Local perceptions and regional climate trends of the Central Plateau of Burkina Faso. Land Degradation and Development, 19, 289–304. doi:10.1002/ldr.842.

    CrossRef  Google Scholar 

  • Wilhite, D. (2001). Drought: A global assessment. Routledge hazards and disasters series: Routledge.

    Google Scholar 

  • Xue, Y., & Shukla, J. (1993). The influence of land surface properties on the Sahel climate. Part I: Desertification. Journal of Climate, 6, 2232–2245.

    CrossRef  Google Scholar 

  • Yang, F., Kumar, A., Schlesinger, M. E., & Wang, W. (2003). Intensity of hydrological cycles in warmer climates. Journal of Climate, 16, 2419–2423.

    CrossRef  Google Scholar 

  • Yulaeva, E., & Wallace, J. M. (1994). The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. Journal of Climate, 7, 1719–1736.

    CrossRef  Google Scholar 

  • Zeng, N. (2003). Drought in the Sahel. Science, 302, 999–1000.

    CrossRef  Google Scholar 

  • Zeng, N., & Neelin, J. D. (1999). A land-atmosphere interaction theory for the tropical deforestation problem. Journal of Climate, 12, 857–872.

    CrossRef  Google Scholar 

  • Zeng, N., Neelin, J. D., Lau, K.-M., & Tucker, C. J. (1999). Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science, 286, 1537–1540.

    CrossRef  Google Scholar 

  • Zhang, X., Zwiers, F. W., Hegerl, G. C., Gillett, N. P., Solomon, S., Stott, P. A., & Nozawa, T. (2007). Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461–466. doi:10.1038/nature06025.

    CrossRef  Google Scholar 

Download references

Acknowledgements

The author was supported by the National Oceanic and Atmospheric Administration through Office of Global Programs grant NA07GP0213, and by the National Science Foundation through Division of Atmospheric and Geospace Sciences grant 0955372. The author wishes to acknowledge the invaluable comments received from the reviewer (Stephen D. Prince) and the editor (Roy Behnke), which have helped clarify, focus and streamline the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Giannini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giannini, A. (2016). 40 Years of Climate Modeling: The Causes of Late-20th Century Drought in the Sahel. In: Behnke, R., Mortimore, M. (eds) The End of Desertification? . Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16014-1_10

Download citation