Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 77))

Abstract

This chapter is concerned with sparse grid (SG) quadrature methods. These methods are constructed using certain combinations of tensor products of one-dimensional quadrature rules. They can exploit the smoothness of f, overcome the curse of dimension to a certain extent and profit from low effective dimensions, see, e.g., [16, 44, 45, 57, 116, 146].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonk, T.: A new algorithm for multi-dimensional adaptive numerical quadrature. In: W. Hackbusch, G. Wittum (eds.) Adaptive Methods – Algorithms, Theory, and Applications, NNFM 46, pp. 54–68. Vieweg (1994)

    Google Scholar 

  2. Bungartz, H.J., Dirnstorfer, S.: Multivariate quadrature on adaptive sparse grids. Computing 71(1), 89–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bungartz, H.J., Griebel, M.: A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives. J. Complexity 15, 167–199 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 1–123 (2004)

    Article  MathSciNet  Google Scholar 

  5. DeVore, R.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  6. Genz, A.: A package for testing multiple integration subroutines. In: P. Keast, G. Fairweather (eds.) Numerical Integration: Recent Developments, Software and Applications, pp. 337–340. Kluwer (1987)

    Google Scholar 

  7. Genz, A., Keister, B.: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comp. Appl. Math. 71, 299–309 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gerstner, T.: Sparse grid quadrature methods for computational finance. Habilitation, University of Bonn (2007)

    Google Scholar 

  9. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numerical Algorithms 18, 209–232 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gerstner, T., Griebel, M.: Dimension–adaptive tensor–product quadrature. Computing 71(1), 65–87 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Griebel, M., Holtz, M.: Dimension-wise integration of high-dimensional functions with applications to finance. J. Complexity (2010). Appeared online.

    Google Scholar 

  12. Griebel, M., Knapek, S.: Optimized tensor-product approximation spaces. Constructive Approximation 16(4), 525–540 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems. In: L. Pardo, A. Pinkus, E. Suli, M. Todd (eds.) Foundations of Computational Mathematics (FoCM05), Santander, pp. 106–161. Cambridge University Press (2006)

    Google Scholar 

  14. Hegland, M.: Adaptive sparse grids. ANZIAM J. 44, C335–C353 (2003)

    MathSciNet  Google Scholar 

  15. Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids. J. Econometrics 144(1), 62–80 (2008)

    Article  MathSciNet  Google Scholar 

  16. Lemieux, C., Owen, A.: Quasi-regression and the relative importance of the ANOVA components of a function. In: K. Fang, F. Hickernell, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 331–344. Springer (2002)

    Google Scholar 

  17. Linetsky, V.: The path integral approach to financial modeling and options pricing. Computational Economics 11, 129–163 (1998)

    Article  MATH  Google Scholar 

  18. Nahm, T.: Error estimation and index refinement for dimension-adaptive sparse grid quadrature with applications to the computation of path integrals. Master’s thesis, University Bonn (2005)

    Google Scholar 

  19. Novak, E., Ritter, K.: High dimensional integration of smooth functions over cubes. Numer. Math. 75, 79–97 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Novak, E., Ritter, K., Steinbauer, A.: A multiscale method for the evaluation of Wiener integrals. In: C. Chui, L. Schumaker (eds.) Approximation Theory IX, Volume 2: Computational Aspects, pp. 251–258. Vanderbilt Univ. Press (1998)

    Google Scholar 

  21. Owen, A.: Dimension distribution and quadrature test functions. Statistica Sinica 13, 1–17 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Papageorgiou, A., Traub, J.: Faster evaluation of multidimensional integrals. Computers in Phyics 11(6), 574–578 (1997)

    Article  Google Scholar 

  23. Petras, K.: Smolyak cubature of given polynomial degree with few nodes for increasing dimension. Numer. Math. 93(4), 729–753 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Plaskota, L.: The exponent of discrepancy of sparse grids is at least 2.1933. Advances in Computational Mathematics 12, 3–24 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Plaskota, L., Wasilkowski, G.W.: The exact exponent of sparse grid quadratures in the weighted case. J. Complexity 17, 840–848 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sloan, I., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complexity 14, 1–33 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    Google Scholar 

  28. Wang, X., Sloan, I.: Why are high-dimensional finance problems often of low effective dimension? SIAM J. Sci. Comput. 27(1), 159 – 183 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wasilkowski, G., Woźniakowski, H.: Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complexity 11, 1–56 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wasilkowski, G., Woźniakowski, H.: Weighted tensor product algorithms for linear multivariate problems. J. Complexity 15, 402–447 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Holtz .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Holtz, M. (2011). Sparse Grid Quadrature. In: Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance. Lecture Notes in Computational Science and Engineering, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16004-2_4

Download citation

Publish with us

Policies and ethics