Skip to main content

Joint Eigenvalue Decomposition Using Polar Matrix Factorization

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6365))

Abstract

In this paper we propose a new algorithm for the joint eigenvalue decomposition of a set of real non-defective matrices. Our approach resorts to a Jacobi-like procedure based on polar matrix decomposition. We introduce a new criterion in this context for the optimization of the hyperbolic matrices, giving birth to an original algorithm called JDTM. This algorithm is described in detail and a comparison study with reference algorithms is performed. Comparison results show that our approach provides quicker and more accurate results in all the considered situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van der Veen, A.J., Ober, P.B., Deprettere, E.F.: Azimuth and elevation computation in high resolution DOA estimation. IEEE Trans. Signal Proc. 40, 1828–1832 (1992)

    Article  Google Scholar 

  2. Lemma, A.N., van der Veen, A.J., Deprettere, E.F.: Analysis of joint angle-frequency estimation using ESPRIT. IEEE Trans. Signal Proc. 51, 1264–1283 (2003)

    Article  Google Scholar 

  3. Haardt, M., Nossek, J.A.: Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieveal problems. IEEE Trans. Signal Proc. 46, 161–169 (1998)

    Article  Google Scholar 

  4. Albera, L., Ferréol, A., Chevalier, P., Comon, P.: ICAR, a tool for blind source separation using fourth order statistics only. IEEE Trans. Signal Proc. 53(10-1), 3633–3643 (2005)

    Article  Google Scholar 

  5. Roemer, F., Haardt, M.: A closed-form solution for multilinear PARAFAC decompositions. In: IEEE SAM 2008, pp. 487–491 (2008)

    Google Scholar 

  6. Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical Methods for Simultaneous Diagonalization. SIAM J. Matrix Anal. Applicat. 14 (4), 927–949

    Google Scholar 

  7. Yeredor, A.: Non-Orthogonal Joint Diagonalization in the Least-Squares Sense with Application in Blind Source Separation. IEEE Trans. Signal Proc. 50(7), 1545–1553 (2002)

    Article  MathSciNet  Google Scholar 

  8. Karfoul, A., Albera, L., Birot, G.: Blind underdetermined mixture identification by joint canonical decomposition of HO cumulants. IEEE Trans. Signal Proc. 58(2), 638–649 (2010)

    Article  Google Scholar 

  9. Strobach, P.: Bi-iteration multiple invariance subspace tracking and adaptive ESPRIT. IEEE Trans. Signal Proc. 48, 442–456 (2000)

    Article  Google Scholar 

  10. Fu, T., Gao, X.: Simultaneous Diagonalization with Similarity Transformation for Non-defective Matrices. In: IEEE ICASSP 2006, pp. 1137–1140 (2006)

    Google Scholar 

  11. Goldstine, H.H., Horwitz, L.P.: A procedure for the diagonalization of normal matrices. J. ACM 6(2), 176–195 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eberlein, P.J.: A Jacobi-like method for the automatic computation of eigenvalues and eigenvectors of an arbitrary matrix. Journal of the Society for Industrial and Applied Mathematics 10(1), 74–88 (1962)

    Article  MathSciNet  Google Scholar 

  13. Ruhe, A.: On the quadratic convergence of a generalization of the Jacobi method to arbitrary matrices. BIT Numerical Mathematics 8, 210–231 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  14. Souloumiac, A.: Nonorthogonal joint Diagonalization by Combining Givens and Hyperbolic Rotations. IEEE Trans. Signal Proc. 57(6), 2222–2231 (2009)

    Article  MathSciNet  Google Scholar 

  15. Iferroudjene, R., Abed Meraim, K., Belouchrani, A.: A New Jacobi-like Method for Joint Diagonalization of Arbitrary non-defective Matrices. Applied Mathematics and Computation 211, 363–373 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cardoso, J.-F., Souloumiac, A.: Jacobi Angles for Simultaneous Diagonalization. SIAM Journal on Matrix Analysis and Applications 17(1), 161–164 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luciani, X., Albera, L. (2010). Joint Eigenvalue Decomposition Using Polar Matrix Factorization. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15995-4_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15994-7

  • Online ISBN: 978-3-642-15995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics