Skip to main content

Auxiliary-Function-Based Independent Component Analysis for Super-Gaussian Sources

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6365))

Abstract

This paper presents new algorithms of independent component analysis (ICA) for super-Gaussian sources based on auxiliary function technique. The algorithms consist of two alternative updates: 1) update of demixing matrix and 2) update of weighted covariance matrix, which include no tuning parameters such as step size. The monotonic decrease of the objective function at each update is guaranteed. The experimental results show that the derived algorithms are robust to nonstationary data and outliers, and the convergence is faster than natural-gradient-based algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)

    Book  Google Scholar 

  2. Bell, A.J., Sejnowski, T.J.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  3. Amari, S., Cichocki, A., Yang, H.H.: A New Learning Algorithm for Blind Signal Separation. In: Touretzky, D., Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems, pp. 757–763. MIT Press, Cambridge (1996)

    Google Scholar 

  4. Douglas, S.C., Gupta, M.: Scaled Natural Gradient Algorithms for Instantaneous and Convolutive Blind Source Separation. In: Proc. ICASSP, pp. 637–640 (2007)

    Google Scholar 

  5. Lee, D.D., Seung, H.S.: Algorithms for Non-Negative Matrix Factorization. In: Proc. NIPS, pp. 556–562 (2000)

    Google Scholar 

  6. Kameoka, H., Nishimoto, T., Sagayama, S.: A Multipitch Analyzer Based on Harmonic Temporal Structured Clustering. IEEE Trans. ASLP 15(3), 982–994 (2007)

    Google Scholar 

  7. Kameoka, H., Ono, N., Sagayama, S.: Auxiliary Function Approach to Parameter Estimation of Constrained Sinusoidal Model. In: Proc. ICASSP, pp. 29–32 (April 2008)

    Google Scholar 

  8. Ono, N., Miyamoto, K., Kameoka, H., Sagayama, S.: A Real-time Equalizer of Harmonic and Percussive Components in Music Signals. In: Proc. ISMIR, pp. 139–144 (September 2008)

    Google Scholar 

  9. Ono, N., Sagayama, S.: R-Means Localization: A Simple Iterative Algorithm for Source Localization Based on Time Difference of Arrival. In: Proc. ICASSP, pp. 2718–2721 (March 2010)

    Google Scholar 

  10. Benveniste, A., M’etivier, M., Priouret, P.: Adaptive algorithms and stochastic approximations. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  11. Sawada, H., Mukai, R., Araki, S., Makino, S.: Polar Coordinate Based Nonlinear Function for Frequency-domain Blind Source Separation. IEICE Trans. Fundamentals E86-A(3), 590–596 (2003)

    Google Scholar 

  12. Bingham, E., Hyvärinen, A.: A Fast Fixed-Point Algorithm for Independent Component Analysis of Complex Valued Signals. International Journal of Neural Systems 10(1), 1–8 (2000)

    Google Scholar 

  13. Murata, N., Ikeda, S., Ziehe, A.: An Approach to Blind Source Separation Based on Temporal Structure of Speech Signals. Neurocomputing 41(1-4), 1–24 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ono, N., Miyabe, S. (2010). Auxiliary-Function-Based Independent Component Analysis for Super-Gaussian Sources. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2010. Lecture Notes in Computer Science, vol 6365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15995-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15995-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15994-7

  • Online ISBN: 978-3-642-15995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics