Classification of Microorganisms via Raman Spectroscopy Using Gaussian Processes

  • Michael Kemmler
  • Joachim Denzler
  • Petra Rösch
  • Jürgen Popp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)


Automatic categorization of microorganisms is a complex task which requires advanced techniques to achieve accurate performance. In this paper, we aim at identifying microorganisms based on Raman spectroscopy. Empirical studies over the last years show that powerful machine learning methods such as Support Vector Machines (SVMs) are suitable for this task. Our work focuses on the Gaussian process (GP) classifier which is new to this field, provides fully probabilistic outputs and allows for efficient hyperparameter optimization. We also investigate the incorporation of prior knowledge regarding possible signal variations where known concepts from invariant kernel theory are transferred to the GP framework. In order to validate the suitability of the GP classifier, a comparison with state-of-the-art learners is conducted on a large-scale Raman spectra dataset, showing that the GP classifier significantly outperforms all other tested classifiers including SVM. Our results further show that incorporating prior knowledge leads to a significant performance gain when small amounts of training data are used.


Raman Spectrum Raman Spectroscopy Covariance Function Gaussian Process Average Recognition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buijtels, P., Willemse-Erix, H., Petit, P., Endtz, H., Puppels, G., Verbrugh, H., van Belkum, A., van Soolingen, D., Maquelin, K.: Rapid identification of mycobacteria by raman spectroscopy. Journal of Clinical Microbiology 46(3), 961–965 (2008)CrossRefGoogle Scholar
  2. 2.
    Rösch, P., Harz, M., Peschke, K.D., Ronneberger, O., Burkhardt, H., Motzkus, H.W., Lankers, M., Hofer, S., Thiele, H., Popp, J.: Chemotaxonomic identification of single bacteria by micro-raman spectroscopy: Application to clean-room-relevant biological contaminations. Applied and Environmental Microbiology 71, 1626–1637 (2005)CrossRefGoogle Scholar
  3. 3.
    Barrow, G., Feltham, R.: Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge University Press, UK (1993)CrossRefGoogle Scholar
  4. 4.
    Amann, R., Fuchs, B.: Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Reviews Microbiology 6, 339–348 (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, T., Morris, J., Martin, E.: Gaussian process regression for multivariate spectroscopic calibration. Chemometrics and Intelligent Laboratory Systems 87(1), 59–71 (2007)CrossRefGoogle Scholar
  6. 6.
    Peschke, K.D., Haasdonk, B., Ronneberger, O., Burkhardt, H., Rösch, P., Harz, M., Popp, J.: Using transformation knowledge for the classification of raman spectra of biological samples. In: Proceedings of the 24th IASTED international conference on Biomedical engineering, Anaheim, CA, USA, pp. 288–293. ACTA Press (2006)Google Scholar
  7. 7.
    Nickisch, H., Rasmussen, C.E.: Approximations for binary gaussian process classification. Journal of Machine Learning Research 9, 2035–2078 (2008)MathSciNetGoogle Scholar
  8. 8.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2005)Google Scholar
  9. 9.
    Haasdonk, B.: Transformation Knowledge in Pattern Analysis with Kernel Methods. PhD thesis, Computer Science Department, University of Freiburg (2005)Google Scholar
  10. 10.
    Hassibi, B., Sayed, A., Kailath, T.: Linear estimation in krein spaces - part i: Theory. IEEE Transactions on Automatic Control 41(1), 18–33 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Casagrande, N.: Multiboost: An open source multi-class adaboost learner (2005),
  12. 12.
    Joachims, T.: Making large-Scale SVM Learning Practical. MIT-Press, Cambridge (1999)Google Scholar
  13. 13.
    Chen, Y., Gupta, M.R., Recht, B.: Learning kernels from indefinite similarities. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 145–152. ACM, New York (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Kemmler
    • 1
  • Joachim Denzler
    • 1
  • Petra Rösch
    • 2
  • Jürgen Popp
    • 2
  1. 1.Chair for Computer Vision 
  2. 2.Institute of Physical ChemistryFriedrich Schiller University of Jena  

Personalised recommendations