Abstract
We present a method to classify materials in illumination series data. An illumination series is acquired using a device which is capable to generate arbitrary lighting environments covering nearly the whole space of the upper hemisphere. The individual images of the illumination series span a high-dimensional feature space. Using a random forest classifier different materials, which vary in appearance (which itself depends on the patterns of incoming illumination), can be distinguished reliably. The associated Gini feature importance allows for determining the features which are most relevant for the classification result. By linking the features to illumination patterns a proposition about optimal lighting for defect detection can be made, which yields valuable information for the selection and placement of light sources.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vision 62(1-2), 61–81 (2005)
Liu, C., Sharan, L., Adelson, E.H., Rosenholtz, R.: Exploring features in a bayesian framework for material recognition. In: Proc. CVPR (2010)
Abuelgasim, A., Gopal, S., Irons, J., Strahler, A.: Classification of ASAS multiangle and multispectral measurements using artificial neural networks. Remote Sensing of Environment 57(2), 79–87 (1996)
Hertzmann, A., Seitz, S.M.: Example-based photometric stereo: Shape reconstruction with general, varying BRDFs. PAMI 27(8), 1254–1264 (2005)
Koppal, S.J., Narasimhan, S.G.: Clustering appearance for scene analysis. In: Proc. CVPR, pp. 1323–1330 (2006)
Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22(3), 759–769 (2003)
Lensch, H.P.A., Lang, J., Sa, A.M., Seidel, H.P., Brunet, P., Fellner, D.W.: Planned sampling of spatially varying BRDFs. In: Proc. Eurographics (2003)
Lindner, C., Arigita, J., Puente Leon, F.: Illumination-based segmentation of structured surfaces in automated visual inspection. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 99–108 (2005)
Wang, O., Gunawardane, P., Scher, S., Davis, J.: Material classification using brdf slices. In: Proc. CVPR (2009)
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: SIGGRAPH (2000)
Dana, K.: BRDF/BTF measurement device. In: Proc. ICCV (2001)
Ghosh, A., Heidrich, W., Achutha, S., O’Toole, M.: BRDF acquisition with basis illumination. In: Proc. ICCV (2007)
Robertson, M.A., Borman, S., Stevenson, R.L.: Dynamic range improvement through multiple exposures. In: Proc. ICIP, pp. 159–163 (1999)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: Proc. ICCV, pp. 1–8 (2007)
Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., Hamprecht, F.A.: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 10, 213 (2009)
Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. PAMI 28(9), 1465–1479 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jehle, M., Sommer, C., Jähne, B. (2010). Learning of Optimal Illumination for Material Classification. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-15986-2_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15985-5
Online ISBN: 978-3-642-15986-2
eBook Packages: Computer ScienceComputer Science (R0)