Skip to main content

Learning of Optimal Illumination for Material Classification

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

Abstract

We present a method to classify materials in illumination series data. An illumination series is acquired using a device which is capable to generate arbitrary lighting environments covering nearly the whole space of the upper hemisphere. The individual images of the illumination series span a high-dimensional feature space. Using a random forest classifier different materials, which vary in appearance (which itself depends on the patterns of incoming illumination), can be distinguished reliably. The associated Gini feature importance allows for determining the features which are most relevant for the classification result. By linking the features to illumination patterns a proposition about optimal lighting for defect detection can be made, which yields valuable information for the selection and placement of light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vision 62(1-2), 61–81 (2005)

    Article  Google Scholar 

  2. Liu, C., Sharan, L., Adelson, E.H., Rosenholtz, R.: Exploring features in a bayesian framework for material recognition. In: Proc. CVPR (2010)

    Google Scholar 

  3. Abuelgasim, A., Gopal, S., Irons, J., Strahler, A.: Classification of ASAS multiangle and multispectral measurements using artificial neural networks. Remote Sensing of Environment 57(2), 79–87 (1996)

    Article  Google Scholar 

  4. Hertzmann, A., Seitz, S.M.: Example-based photometric stereo: Shape reconstruction with general, varying BRDFs. PAMI 27(8), 1254–1264 (2005)

    Google Scholar 

  5. Koppal, S.J., Narasimhan, S.G.: Clustering appearance for scene analysis. In: Proc. CVPR, pp. 1323–1330 (2006)

    Google Scholar 

  6. Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22(3), 759–769 (2003)

    Article  Google Scholar 

  7. Lensch, H.P.A., Lang, J., Sa, A.M., Seidel, H.P., Brunet, P., Fellner, D.W.: Planned sampling of spatially varying BRDFs. In: Proc. Eurographics (2003)

    Google Scholar 

  8. Lindner, C., Arigita, J., Puente Leon, F.: Illumination-based segmentation of structured surfaces in automated visual inspection. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 99–108 (2005)

    Google Scholar 

  9. Wang, O., Gunawardane, P., Scher, S., Davis, J.: Material classification using brdf slices. In: Proc. CVPR (2009)

    Google Scholar 

  10. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: SIGGRAPH (2000)

    Google Scholar 

  11. Dana, K.: BRDF/BTF measurement device. In: Proc. ICCV (2001)

    Google Scholar 

  12. Ghosh, A., Heidrich, W., Achutha, S., O’Toole, M.: BRDF acquisition with basis illumination. In: Proc. ICCV (2007)

    Google Scholar 

  13. Robertson, M.A., Borman, S., Stevenson, R.L.: Dynamic range improvement through multiple exposures. In: Proc. ICIP, pp. 159–163 (1999)

    Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  15. Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: Proc. ICCV, pp. 1–8 (2007)

    Google Scholar 

  16. Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., Hamprecht, F.A.: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 10, 213 (2009)

    Article  Google Scholar 

  17. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. PAMI 28(9), 1465–1479 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jehle, M., Sommer, C., Jähne, B. (2010). Learning of Optimal Illumination for Material Classification. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics