Advertisement

Geometrically Constrained Level Set Tracking for Automotive Applications

  • Esther Horbert
  • Dennis Mitzel
  • Bastian Leibe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

We propose a new approach for integrating geometric scene knowledge into a level-set tracking framework. Our approach is based on a novel constrained-homography transformation model that restricts the deformation space to physically plausible rigid motion on the ground plane. This model is especially suitable for tracking vehicles in automotive scenarios. Apart from reducing the number of parameters in the estimation, the 3D transformation model allows us to obtain additional information about the tracked objects and to recover their detailed 3D motion and orientation at every time step. We demonstrate how this information can be used to improve a Kalman filter estimate of the tracked vehicle dynamics in a higher-level tracker, leading to more accurate object trajectories. We show the feasibility of this approach for an application of tracking cars in an inner-city scenario.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Betke, M., Haritaoglu, E., Davis, L.S.: Real-time multiple vehicle detection and tracking from a moving vehicle. MVA 12, 69–83 (2000)CrossRefGoogle Scholar
  2. 2.
    Gavrila, D., Munder, S.: Multi-Cue Pedestrian Detection and Tracking from a Moving Vehicle. IJCV 73(1), 41–59 (2007)CrossRefGoogle Scholar
  3. 3.
    Leibe, B., Schindler, K., Van Gool, L.: Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles. PAMI 30(10), 1683–1698 (2008)Google Scholar
  4. 4.
    Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Robust Multi-Person Tracking from a Mobile Platform. PAMI 31(10), 1831–1846 (2009)Google Scholar
  5. 5.
    Koller, D., Daniilidis, K., Nagel, H.: Model-Based Object Tracking in Monocular Image Sequences of Road Traffic Scenes. IJCV 10(3) (1993)Google Scholar
  6. 6.
    Dellaert, F., Thorpe, C.: Robust Car Tracking using Kalman filtering and Bayesian templates. In: CITS (1997)Google Scholar
  7. 7.
    Chateau, T., Jurie, F., Dhome, M., Clady, X.: Real-Time Tracking Using Wavelet Representation. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, p. 523. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Benhimane, S., Malis, E., Rives, P.: Vision-based Control for Car Platooning using Homography Decomposition. In: ICRA, pp. 2161–2166 (2005)Google Scholar
  9. 9.
    Cremers, D., Rousson, M., Deriche, R.: A Review of Statistical Approaches to Level Set Segmentation Integrating Color, Texture, Motion and Shape. IJCV 72, 195–215 (2007)CrossRefGoogle Scholar
  10. 10.
    Schoenemann, T., Cremers, D.: A Combinatorial Solution for Model-based Image Segmentation and Real-time Tracking. PAMI (2009)Google Scholar
  11. 11.
    Bibby, C., Reid, I.: Robust Real-Time Visual Tracking using Pixel-Wise Posteriors. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 831–844. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Fussenegger, M., Deriche, R., Pinz, A.: Multiregion Level Set Tracking with Transformation Invariant Shape Priors. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 395–404. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Brox, T., Rosenhahn, B., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 109–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Prisacariu, V., Reid, I.: PWP3D: Real-time segmentation and tracking of 3D objects. In: BMVC (2009)Google Scholar
  15. 15.
    Li, C., Xu, C., Gui, C., Fox, M.: Level Set Evolution without Re-initialization: A New Variational Formulation. In: CVPR (2005)Google Scholar
  16. 16.
    Baker, S., Matthews, I.: Lucas-Kanade 20 Years On: A Unifying Framework. IJCV 69, 221–255 (2004)CrossRefGoogle Scholar
  17. 17.
    Muir, P., Neuman, C.: Kinematic Modeling of Wheeled Mobile Robots. J. Robotic Systems 4(2), 281–340 (1987)CrossRefGoogle Scholar
  18. 18.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Esther Horbert
    • 1
  • Dennis Mitzel
    • 1
  • Bastian Leibe
    • 1
  1. 1.UMIC Research Centre RWTH Aachen UniversityGermany

Personalised recommendations