Skip to main content

Semi-supervised Learning of Edge Filters for Volumetric Image Segmentation

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

Abstract

For every segmentation task, prior knowledge about the object that shall be segmented has to be incorporated. This is typically performed either automatically by using labeled data to train the used algorithm, or by manual adaptation of the algorithm to the specific application. For the segmentation of 3D data, the generation of training sets is very tedious and time consuming, since in most cases, an expert has to mark the object boundaries in all slices of the 3D volume. To avoid this, we developed a new framework that combines unsupervised and supervised learning. First, the possible edge appearances are grouped, such that, in the second step, the expert only has to choose between relevant and non-relevant clusters. This way, even objects with very different edge appearances in different regions of the boundary can be segmented, while the user interaction is limited to a very simple operation. In the presented work, the chosen edge clusters are used to generate a filter for all relevant edges. The filter response is used to generate an edge map based on which an active surface segmentation is performed. The evaluation on the segmentation of plant cells recorded with 3D confocal microscopy yields convincing results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. on PAMI 23/6, 681–685 (2001)

    Google Scholar 

  2. Vehkomäki, T., Gerig, G., Szkely, G.: A user-guided tool for efficient segmentation of medical image data. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 685–694. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Yushkevich, P.A., Piven, J., Hazlett, C., Smith, H., Smith, G., Ho, R., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31/3 (2006)

    Google Scholar 

  4. Schulz, J., Schmidt, T., Ronneberger, O., Burkhardt, H., Pasternak, T., Dovzhenko, A., Palme, K.: Fast scalar and vectorial grayscale based invariant features for 3d cell nuclei localization and classification. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 182–191. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Xu, R., Wunsch, D.C.: Clustering. Wiley, Chichester (2008)

    Book  Google Scholar 

  6. Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE Trans. Imag. Proc. 7/3, 321–345 (1998)

    MathSciNet  Google Scholar 

  7. Keuper, M., Padeken, J., Heun, P., Burkhardt, H., Ronneberger, O.: A 3d active surface model for the accurate segmentation of drosophila schneider cell nuclei and nucleoli. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5875, pp. 865–874. Springer, Heidelberg (2009)

    Google Scholar 

  8. Khairy, K., Howard, J.: Spherical harmonics-based parametric deconvolution of 3d surface images using bending energy minimization. Medical Image Analysis 12, 217–227 (2008)

    Article  Google Scholar 

  9. Ballard, D.H., Brown, C.M.: Computer vision. Prentice-Hall, NJ (1981)

    Google Scholar 

  10. Brechbühler, C., Gerig, G., Kübler, O.: Parametrization of closed surfaces for 3-d shape description. Comput. Vis. Image Underst. 61(2), 154–170 (1995)

    Article  Google Scholar 

  11. Aguet, F., Jacob, M., Unser, M.: Three-dimensional feature detection using optimal steerable filters. In: Proc. of the ICIP, pp. 1158–1161 (2005)

    Google Scholar 

  12. Dovzhenko, A., Bergen, U., Koop, H.U.: Thin alginate layer (tal)-technique for protoplast culture of tobacco leaf protoplasts: Shoot formation in less than two weeks. Protoplasma 204, 114–118 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keuper, M. et al. (2010). Semi-supervised Learning of Edge Filters for Volumetric Image Segmentation. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics