An Improved Histogram of Edge Local Orientations for Sketch-Based Image Retrieval

  • Jose M. Saavedra
  • Benjamin Bustos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)


Content-based image retrieval requires a natural image (e.g, a photo) as query, but the absence of such a query image is usually the reason for a search. An easy way to express the user query is using a line-based hand-drawing, a sketch, leading to the sketch-based image retrieval. Few authors have addressed image retrieval based on a sketch as query, and the current approaches still keep low performance under scale, translation, and rotation transformations. In this paper, we describe a method based on computing efficiently a histogram of edge local orientations that we call HELO. Our method is based on a strategy applied in the context of fingerprint processing. This descriptor is invariant to scale and translation transformations. To tackle the rotation problem, we apply two normalization processes, one using principal component analysis and the other using polar coordinates. Finally, we linearly combine two distance measures. Our results show that HELO significantly increases the retrieval effectiveness in comparison with the state of the art.


Test Image Image Retrieval Local Orientation Target Image Query Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M.: A descriptor for large scale image retrieval based on sketched feature lines. In: Proc. of the 6th Eurographics Symposium on Sketch-Based Interfaces and Modeling, pp. 29–36 (2009)Google Scholar
  2. 2.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3d models. ACM Transactions on Graphics 22(1), 83–105 (2003)CrossRefGoogle Scholar
  3. 3.
    Kato, T., Kurita, T., Otsu, N., Hirata, K.: A sketch retrieval method for full color image database-query by visual example. In: Proc. of the 11th IAPR International Conf. on Computer Vision and Applications, Conf. A: Pattern Recognition, pp. 530–533 (1992)Google Scholar
  4. 4.
    Sun Won, C., Kwon Park, D., Park, S.J.: Efficient use of MPEG-7 edge histogram descriptor. Electronic and Telecomunications Research Institute Journal 24, 23–30 (2002)Google Scholar
  5. 5.
    Del Bimbo, A., Pala, P.: Visual image retrieval by elastic matching of user sketches. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(2), 121–132 (1997)CrossRefGoogle Scholar
  6. 6.
    Chalechale, A., Naghdy, G., Mertins, A.: Sketch-based image matching using angular partitioning. IEEE Trans. on Systems, Man and Cybernetics, Part A: Systems and Humans 35(1), 28–41 (2005)CrossRefGoogle Scholar
  7. 7.
    Bazen, A.M., Gerez, S.H.: Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(7), 905–919 (2002)CrossRefGoogle Scholar
  8. 8.
    Jain, A., Vailaya, A.: Image retrieval using color and shape. Pattern Recognition 29, 1233–1244 (1996)CrossRefGoogle Scholar
  9. 9.
    Martínez, J.M.: MPEG-7: Overview of MPEG-7 description tools, Part 2. IEEE MultiMedia 9(3), 83–93 (2002)CrossRefGoogle Scholar
  10. 10.
    Pu, J., Ramani, K.: A 3d model retrieval method using 2d freehand sketches. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 343–346. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Belongie, S., Malik, J., Puzicha, J.: Shape context: A new descriptor for shape matching and object recognition. In: Proc. of the 2000 Neural Information Processing Systems Conference, pp. 831–837 (2000)Google Scholar
  12. 12.
    Davies, E.R.: The effect of noise on edge orientation computations. Pattern Recognition Letters 6(5), 315–322 (1987)CrossRefGoogle Scholar
  13. 13.
    Canny, J.: A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  14. 14.
    Gatos, B., Pratikakis, I., Perantonis, S.: Hybrid off-line cursive handwriting word recognition. In: Proc. of the 8th International Conference on Pattern Recognition, pp. 998–1002 (2006)Google Scholar
  15. 15.
    Gonzales, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Englewood Cliffs (2008)Google Scholar
  16. 16.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: Proc. of the 2004 Conference on Computer Vision and Pattern Recognition, Workshop on Generative-Model Based Vision, p. 178 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jose M. Saavedra
    • 1
  • Benjamin Bustos
    • 1
  1. 1.PRISMA Research Group, Department of Computer ScienceUniversity of Chile 

Personalised recommendations