Advertisement

Robust Open-Set Face Recognition for Small-Scale Convenience Applications

  • Hua Gao
  • Hazım Kemal Ekenel
  • Rainer Stiefelhagen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

In this paper, a robust real-world video based open-set face recognition system is presented. This system is designed for general small-scale convenience applications, which can be used for providing customized services. In the developed prototype, the system identifies a person in question and conveys customized information according to the identity. Since it does not require any cooperation of the users, the robustness of the system can be easily affected by the confounding factors. To overcome the pose problem, we generated frontal view faces with a tracked 2D face model. We also employed a distance metric to assess the quality of face model tracking. A local appearance-based face representation was used to make the system robust against local appearance variations. We evaluated the system’s performance on a face database which was collected in front of an office. The experimental results on this database show that the developed system is able to operate robustly under real-world conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. on PAMI 23(6), 643–660 (2001)Google Scholar
  2. 2.
    Huang, F.J., Zhou, Z., Zhang, H.J., Chen, T.: Pose invariant face recognition. In: Proc. of the IEEE Int’l. Conference on Automatic Face and Gesture Recognition, pp. 245–250 (2000)Google Scholar
  3. 3.
    Zhao, W.Y., Chellappa, R.: SFS based view synthesis for robust face recognition. In: Proc. of the IEEE Int’l. Conference on Automatic Face and Gesture Recognition, pp. 285–292 (2000)Google Scholar
  4. 4.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998, Part II. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Edwards, G.J., Cootes, T.F., Taylor, C.J.: Face recognition using active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 581–595. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Cootes, T.F., Wheeler, G.V., Walker, K.N., Taylor, C.J.: View-based active appearance models. Image and Vision Computing 20(9-10), 657–664 (2002)CrossRefGoogle Scholar
  7. 7.
    Guillemaut, J., Kittler, J., Sadeghi, M.T., Christmas, W.J.: General pose face recognition using frontal face model. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 79–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Ekenel, H.K.: A robust face recognition algorithm for real-world applications. PhD dissertation, University of Karlsruhe, TH (2009)Google Scholar
  9. 9.
    Gao, H., Ekenel, H.K., Stiefelhagen, R.: Pose normalization for local appearance-based face recognition. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 32–41. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60(2), 135–164 (2004)CrossRefGoogle Scholar
  11. 11.
    Gross, R., Matthews, I., Baker, S.: Generic vs. person specific active appearance models. Image and Vision Computing 23(11), 1080–1093 (2005)CrossRefGoogle Scholar
  12. 12.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  13. 13.
    Liu, X., Wheeler, F.W., Tu, P.H.: Improved face model fitting on video sequences. In: Proc. of British Machine Vision Conference (BMVC 2007) (2007)Google Scholar
  14. 14.
    Jebara, T.S.: 3D pose estimation and normalization for face recognition. B. Thesis, McGill Centre for Intelligent Machines (1996)Google Scholar
  15. 15.
    Ekenel, H.K., Stiefelhagen, R.: Block selection in the local appearance-based face recognition scheme. In: CVPR Biometrics Workshop (2006)Google Scholar
  16. 16.
    Ekenel, H.K., Szasz-Toth, L., Stiefelhagen, R.: Open-set face recognition-based visitor interface system. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 43–52. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hua Gao
    • 1
  • Hazım Kemal Ekenel
    • 1
  • Rainer Stiefelhagen
    • 1
  1. 1.Institute for AnthropomaticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations