Active Self-calibration of Multi-camera Systems

  • Marcel Brückner
  • Joachim Denzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)


We present a method for actively calibrating a multi-camera system consisting of pan-tilt zoom cameras. After a coarse initial calibration, we determine the probability of each relative pose using a probability distribution based on the camera images. The relative poses are optimized by rotating and zooming each camera pair in a way that significantly simplifies the problem of extracting correct point correspondences. In a final step we use active camera control, the optimized relative poses, and their probabilities to calibrate the complete multi-camera system with a minimal number of relative poses. During this process we estimate the translation scales in a camera triangle using only two of the three relative poses and no point correspondences. Quantitative experiments on real data outline the robustness and accuracy of our approach.


Interest Point Camera Calibration Point Correspondence Active Camera Initial Relative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, Z.: Flexible Camera Calibration by Viewing a Plane from Unknown Orientations. In: Proceedings of the ICCV, pp. 666–673 (1999)Google Scholar
  2. 2.
    Hartley, R.: Self-calibration from multiple views with a rotating camera. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 471–478. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Bajramovic, F., Denzler, J.: Self-calibration with Partially Known Rotations. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 1–10. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Chen, X., Davis, J., Slusallek, P.: Wide area camera calibration using virtual calibration objects. In: Proceedings of the CVPR, vol. 2, pp. 520–527 (2000)Google Scholar
  5. 5.
    Svoboda, T., Hug, H., Van Gool, L.: ViRoom–Low Cost Synchronized Multicamera System and Its Self-calibration. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 515–522. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Läbe, T., Förstner, W.: Automatic relative orientation of images. In: Proceedings of the 5th Turkish-German Joint Geodetic Days (2006)Google Scholar
  7. 7.
    Bajramovic, F., Denzler, J.: Global uncertainty-based selection of relative poses for multi camera calibration. In: Proceedings of the BMVC, vol. 2, pp. 745–754 (2008)Google Scholar
  8. 8.
    Sinha, S., Pollefeys, M.: Towards calibrating a pan-tilt-zoom cameras network. In: Proceedings of the IEEE Workshop on Omnidirectional Vision (2004)Google Scholar
  9. 9.
    Chippendale, P., Tobia, F.: Collective calibration of active camera groups. In: IEEE Conf. on Advanced Video and Signal Based Surveillance, pp. 456–461 (2005)Google Scholar
  10. 10.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC, pp. 384–393 (2002)Google Scholar
  11. 11.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Brückner, M., Bajramovic, F., Denzler, J.: Geometric and probabilistic image dissimilarity measures for common field of view detection. In: Proceedings of the CVPR, pp. 2052–2057 (2009)Google Scholar
  13. 13.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)Google Scholar
  14. 14.
    Nistér, D.: An efficient solution to the five-point relative pose problem. PAMI 26, 756–770 (2004)Google Scholar
  15. 15.
    Fischler, M.A., Bolles, R.C.: Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Schiller, I.: MIP - MultiCameraCalibration, (Last visited on 22-04-2010)
  17. 17.
    Heikkila, J., Silvén, O.: A Four-step Camera Calibration Procedure with Implicit Image Correction. In: Proceedings of the CVPR, pp. 1106–1112 (1997)Google Scholar
  18. 18.
    McGill, R., Tukey, J., Larsen, W.A.: Variations of Boxplots. The American Statistician 32, 12–16 (1978)CrossRefGoogle Scholar
  19. 19.
    Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3d robotics hand/eye calibration. IEEE Transactions on Robotics and Automation 5(3), 345–357 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marcel Brückner
    • 1
  • Joachim Denzler
    • 1
  1. 1.Chair for Computer VisionFriedrich Schiller University of Jena 

Personalised recommendations