Advertisement

Nugget-Cut: A Segmentation Scheme for Spherically- and Elliptically-Shaped 3D Objects

  • Jan Egger
  • Miriam H. A. Bauer
  • Daniela Kuhnt
  • Barbara Carl
  • Christoph Kappus
  • Bernd Freisleben
  • Christopher Nimsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

In this paper, a segmentation method for spherically- and elliptically-shaped objects is presented. It utilizes a user-defined seed point to set up a directed 3D graph. The nodes of the 3D graph are obtained by sampling along rays that are sent through the surface points of a polyhedron. Additionally, several arcs and a parameter constrain the set of possible segmentations and enforce smoothness. After the graph has been constructed, the minimal cost closed set on the graph is computed via a polynomial time s-t cut, creating an optimal segmentation of the object. The presented method has been evaluated on 50 Magnetic Resonance Imaging (MRI) data sets with World Health Organization (WHO) grade IV gliomas (glioblastoma multiforme). The ground truth of the tumor boundaries were manually extracted by three clinical experts (neurological surgeons) with several years (> 6) of experience in resection of gliomas and afterwards compared with the automatic segmentation results of the proposed scheme yielding an average Dice Similarity Coefficient (DSC) of 80.37±8.93%. However, no segmentation method provides a perfect result, so additional editing on some slices was required, but these edits could be achieved quickly because the automatic segmentation provides a border that fits mostly to the desired contour. Furthermore, the manual segmentation by neurological surgeons took 2-32 minutes (mean: 8 minutes), in contrast to the automatic segmentation with our implementation that took less than 5 seconds.

Keywords

glioma segmentation polyhedra graph minimal s-t cut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kleihues, P., et al.: The WHO classification of tumors of the nervous system. Journal of Neuropathology & Experimental Neurology 61(3), 215–229 (2002)Google Scholar
  2. 2.
    Kortmann, R.D., et al.: Radiochemotherapy of malignant gliom in adults. Clinical experiences. Strahlenther Onkol. 179(4), 219–232 (2003)CrossRefGoogle Scholar
  3. 3.
    Lacroix, M., Abi-Said, D., Fourney, D.R., et al.: A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection and survival. Journal of Neurosurgery 95, 190–198 (2001)CrossRefGoogle Scholar
  4. 4.
    Angelini, E.D., Clatz, O., Mandonnet, E., Konukoglu, E., Capelle, L., Duffau, H.: Glioma Dynamics and Computational Models: A Review of Segmentation, Registration, and In Silico Growth Algorithms and their Clinical Applications. Current Medical Imaging Reviews 3, 262–276 (2007)CrossRefGoogle Scholar
  5. 5.
    Gibbs, P., Buckley, D.L., Blackband, S.J., et al.: Tumour volume determination from MR images by morphological segmentation. Physics in Med. & Biology 41(11), 2437–2446 (1996)CrossRefGoogle Scholar
  6. 6.
    Letteboer, M.M.J., Olsen, O.F., Dam, E.B., et al.: Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm. Academic Radiology 11, 1125–1138 (2004)CrossRefGoogle Scholar
  7. 7.
    Droske, M., Meyer, B., Rumpf, M., et al.: An adaptive level set method for interactive segmentation of intracranial tumors. Neurol. Res. 27(4), 363–370 (2005)CrossRefGoogle Scholar
  8. 8.
    Clark, M., Hall, L.O., Goldgof, D.B., et al.: Automatic tumor segmentation using knowledge-based techniques. IEEE TMI 17(2), 187–201 (1998)Google Scholar
  9. 9.
    Prastawa, M., Bullitt, E., Ho, S., et al.: A brain tumor segmentation framework based on outlier detection. Medical Image Analysis 8, 275–283 (2004)CrossRefGoogle Scholar
  10. 10.
    Sieg, C., Handels, H., Pöppl, S.J.: Automatic Segmentation of Contrast-Enhanced Brain Tumors in Multispectral MR-Images with Backpropagation-Networks. In: Bildverarbeitung für die Medizin (BVM), pp. 347–351. Springer Press, Heidelberg (2001) (in German)Google Scholar
  11. 11.
    Egger, J., Mostarkic, Z., Großkopf, S., Freisleben, B.: A Fast Vessel Centerline Extraction Algorithm for Catheter Simulation. In: 20th IEEE International Symposium on Computer-Based Medical Systems, Maribor, Slovenia, pp. 177–182. IEEE Press, Los Alamitos (2007)Google Scholar
  12. 12.
    Egger, J., O’Donnell, T., Hopfgartner, C., Freisleben, B.: Graph-Based Tracking Method for Aortic Thrombus Segmentation. In: Proceedings of 4th European Congress for Medical and Biomedical Engineering, Engineering for Health, Antwerp, Belgium (2008)Google Scholar
  13. 13.
    Egger, J., Freisleben, B., Setser, R., Renapuraar, R., Biermann, C., O’Donnell, T.: Aorta Segmentation for Stent Simulation. In: 12th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Cardiovascular Interventional Imaging and Biophysical Modelling Workshop, London, United Kingdom, 10pages (2009)Google Scholar
  14. 14.
    Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal Surface Segmentation in Volumetric Images – A Graph-Theoretic Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1), 119–134 (2006)CrossRefGoogle Scholar
  15. 15.
    Bauer, M.H.A., Egger, J., O’Donnell, T., Freisleben, B., Barbieri, S., Klein, J., Hahn, H.K., Nimsky, C.: A Fast and Robust Graph-based Approach for Boundary Estimation of Fiber Bundles Relying on Fractional Anisotropy Maps. In: 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  16. 16.
    Veksler, O.: Star Shape Prior for Graph-Cut Image Segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Ishikawa, H., Geiger, D.: Segmentation by Grouping Junctions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 125–131 (1998)Google Scholar
  18. 18.
    Grady, L., Schwartz, E.L.: Isoperimetric Graph Partitioning for Image Segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(3), 469–475 (2006)CrossRefGoogle Scholar
  19. 19.
    Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  20. 20.
    Shabou, A., et al.: A graph-cut based algorithm for approximate MRF optimization. In: International Conference on Image Processing (ICIP), pp. 2413–2416 (2009)Google Scholar
  21. 21.
    Kass, M., Witkin, A., Terzopoulos, D.: Constraints on Deformable Models: Recovering 3D Shape and Nongrid Motion. Artificial Intelligence 36, 91–123 (1988)zbMATHCrossRefGoogle Scholar
  22. 22.
    MeVisLab – development environment for medical image processing and visualization. MeVis Medical Solutions AG and Fraunhofer MEVIS, Bremen, Germany, http://www.mevislab.de
  23. 23.
    Zou, K.H., Warfield, S.K., Bharatha, A., et al.: Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index: Scientific Reports. Academic Radiology 11(2), 178–189 (2004)CrossRefGoogle Scholar
  24. 24.
    Egger, J., Bauer, M.H.A., Kuhnt, D., Kappus, C., Carl, B., Freisleben, B., Nimsky, C.: A Flexible Semi-Automatic Approach for Glioblastoma multiforme Segmentation. In: Biosignal Processing Conference, DGBMT, IEEE, Charité, Berlin, Germany (2010)Google Scholar
  25. 25.
    Greiner, K., et al.: Segmentation of Aortic Aneurysms in CTA-images with the Statistic Method of the Active Appearance Models. In: Bildverarbeitung für die Medizin (BVM), pp. 51–55. Springer Press, Heidelberg (2008) (in German)CrossRefGoogle Scholar
  26. 26.
    Egger, J., Bauer, M.H.A., Kuhnt, D., Freisleben, B., Nimsky, C.: Pituitary Adenoma Segmentation. In: Proceedings of International Biosignal Processing Conference, DGBMT, IEEE, Charité, Berlin, Germany (2010)Google Scholar
  27. 27.
    Ma, B., Harbaugh, R.E., Raghavan, M.L.: Three-Dimensional Geometrical Characterization of Cerebral Aneurysms. Ann. of Biomed. Eng. 32(2), 264–273 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jan Egger
    • 1
    • 2
  • Miriam H. A. Bauer
    • 1
    • 2
  • Daniela Kuhnt
    • 1
  • Barbara Carl
    • 1
  • Christoph Kappus
    • 1
  • Bernd Freisleben
    • 2
  • Christopher Nimsky
    • 1
  1. 1.Dept. of NeurosurgeryUniversity of MarburgMarburgGermany
  2. 2.Dept. of Math. and Computer ScienceUniversity of MarburgMarburgGermany

Personalised recommendations