Advertisement

Incremental Learning in the Energy Minimisation Framework for Interactive Segmentation

  • Denis Kirmizigül
  • Dmitrij Schlesinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

In this article we propose a method for parameter learning within the energy minimisation framework for segmentation. We do this in an incremental way where user input is required for resolving segmentation ambiguities. Whereas most other interactive learning approaches focus on learning appearance characteristics only, our approach is able to cope with learning prior terms; in particular the Potts terms in binary image segmentation. The artificial as well as real examples illustrate the applicability of the approach.

Keywords

Ground Truth Incremental Learn Interactive Learning Parameter Learning Binary Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlesinger, D., Flach, B.: A probabilistic segmentation scheme. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 183–192. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Woodford, O.J., Rother, C., Kolmogorov, V.: A global perspective on map inference for low-level vision. In: IEEE International Conference on Computer Vision (ICCV) (October 2009)Google Scholar
  3. 3.
    Peng, B., Veksler, O.: Parameter selection for graph cut based image segmentation. In: British Machine Vision Conference (BMVC) (September 2008)Google Scholar
  4. 4.
    Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in computer vision. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8 (October 2007)Google Scholar
  6. 6.
    Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)CrossRefGoogle Scholar
  7. 7.
    Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images (2001)Google Scholar
  8. 8.
    Blake, A., Rother, C., Brown, M., Pérez, P., Torr, P.H.S.: Interactive image segmentation using an adaptive gmmrf model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part I. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Boykov, Y., Olga Veksler, R.Z.: Efficient approximate energy minimization via graph cuts. IEEE transactions on PAMI 20, 1222–1239 (2001)Google Scholar
  10. 10.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)CrossRefGoogle Scholar
  11. 11.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  12. 12.
    Schlesinger, M.I., Hlaváč, V.: Ten lectures on statistical and structural pattern recognition. Computational Imaging and Vision, vol. 24. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  13. 13.
    Franc, V., Savchynskyy, B.: Discriminative learning of max-sum classifiers. Journal of Machine Learning Research 9, 67–104 (2008)MathSciNetGoogle Scholar
  14. 14.
    Nickisch, H., Kohli, P., Rother, C.: Learning an interactive segmentation system (December 2009), http://arxiv.org/abs/0912.2492
  15. 15.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l. Conf. Computer Vision, vol. 2, pp. 416–423 (July 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Denis Kirmizigül
    • 1
  • Dmitrij Schlesinger
    • 1
  1. 1.Dresden University of Technology 

Personalised recommendations