From Single Cameras to the Camera Network: An Auto-Calibration Framework for Surveillance

  • Cristina Picus
  • Branislav Micusik
  • Roman Pflugfelder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)


This paper presents a stratified auto-calibration framework for typical large surveillance set-ups including non-overlapping cameras. The framework avoids the need of any calibration target and purely relies on visual information coming from walking people. Since in non-overlapping scenarios there are no point correspondences across the cameras the standard techniques cannot be employed. We show how to obtain a fully calibrated camera network starting from single camera calibration and bringing the problem to a reduced form suitable for multi-view calibration. We extend the standard bundle adjustment by a smoothness constraint to avoid the ill-posed problem arising from missing point correspondences. The proposed framework optimizes the objective function in a stratified manner thus suppressing the problem of local minima. Experiments with synthetic and real data validate the approach.


Camera View Camera Parameter Single Camera Bundle Adjustment Structure From Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-overlapping cameras. In: Proc. CVPR (2005)Google Scholar
  2. 2.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  3. 3.
    Micusik, B., Pajdla, T.: Simultaneous surveillance camera calibration and foot-head homology estimation from human detections. In: Proc. CVPR (2010)Google Scholar
  4. 4.
    Rahimi, A., Dunagan, B., Darrell, T.: Simultaneous calibration and tracking with a network of non-overlapping sensors. In: Proc. CVPR (2004)Google Scholar
  5. 5.
    Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment - a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Hoiem, D., Efros, A.A., Hebert, M.: Putting objects in perspective. In: Proc. CVPR (2006)Google Scholar
  7. 7.
    Pflugfelder, R., Bischof, H.: Localization and trajectory reconstruction in surveillance cameras with non-overlapping views. PAMI 32(4), 709–721 (2009)Google Scholar
  8. 8.
    Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams: Establishing a common coordinate frame. PAMI 22(8), 758–767 (2000)Google Scholar
  9. 9.
    Stein, G.: Tracking from multiple view points: Self-calibration of space and time. In: Proc. CVPR. (1999)Google Scholar
  10. 10.
    Jaynes, C.: Multi-view calibration from planar motion trajectories. Image and Vision Computing (IVC) 22(7), 535–550 (2004)CrossRefGoogle Scholar
  11. 11.
    Sheikh, Y., Li, X., Shah, M.: Trajectory association across non-overlapping moving cameras in planar scenes. In: Proc. CVPR (2007)Google Scholar
  12. 12.
    Rudoy, M., Rohrs, C.E.: Simultaneous sensor calibration and path estimation. In: IEEE Asilomar Conf. on Signals, Systems, and Computers (2006)Google Scholar
  13. 13.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR (2005)Google Scholar
  14. 14.
    Lv, F., Zhao, T., Nevatia, R.: Self-calibration of a camera from video of a walking human. In: Proc. ICPR (2002)Google Scholar
  15. 15.
    Krahnstoever, N., Mendonca, P.R.S.: Bayesian autocalibration for surveillance. In: Proc. ICCV, pp. 1858–1865 (2005)Google Scholar
  16. 16.
    Lourakis, M.A., Argyros, A.: SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans. Math. Software 36(1), 1–30 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cristina Picus
    • 1
  • Branislav Micusik
    • 1
  • Roman Pflugfelder
    • 1
  1. 1.Safety and Security DepartmentAIT Austrian Institute of Technology 

Personalised recommendations