Real-Time Dense Geometry from a Handheld Camera

  • Jan Stühmer
  • Stefan Gumhold
  • Daniel Cremers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)


We present a novel variational approach to estimate dense depth maps from multiple images in real-time. By using robust penalizers for both data term and regularizer, our method preserves discontinuities in the depth map. We demonstrate that the integration of multiple images substantially increases the robustness of estimated depth maps to noise in the input images. The integration of our method into recently published algorithms for camera tracking allows dense geometry reconstruction in real-time using a single handheld camera. We demonstrate the performance of our algorithm with real-world data.


Input Image Multiple Image Data Term Thresholding Scheme Robust Penalizers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jin, H., Favaro, P., Soatto, S.: Real-time 3-d motion and structure of point-features: A front-end for vision-based control and interaction. In: Int. Conf. on Computer Vision and Pattern Recognition, pp. 2778–2779 (2000)Google Scholar
  2. 2.
    Nister, D.: Preemptive ransac for live structure and motion estimation. In: IEEE Int. Conf. on Computer Vision, pp. 199–206 (2003)Google Scholar
  3. 3.
    Kolev, K., Cremers, D.: Continuous ratio optimization via convex relaxation with applications to multiview 3d reconstruction. In: CVPR, pp. 1858–1864. IEEE, Los Alamitos (2009)Google Scholar
  4. 4.
    Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L1 range image integration. In: IEEE Int. Conf. on Computer Vision, Rio de Janeiro, Brazil. LNCS. IEEE, Los Alamitos (2007)Google Scholar
  5. 5.
    Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Slesareva, N., Bruhn, A., Weickert, J.: Optic flow goes stereo: A variational method for estimating discontinuity-preserving dense disparity maps. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 33–40. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Newcombe, R.A., Davison, A.J.: Live dense reconstruction with a single moving camera. In: Int. Conf. on Computer Vision and Pattern Recognition (2010)Google Scholar
  9. 9.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1-2), 89–97 (2004)MathSciNetGoogle Scholar
  10. 10.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)zbMATHCrossRefGoogle Scholar
  11. 11.
    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2007), Nara, Japan (November 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jan Stühmer
    • 1
    • 2
  • Stefan Gumhold
    • 2
  • Daniel Cremers
    • 1
  1. 1.Department of Computer ScienceTU München 
  2. 2.Department of Computer ScienceTU Dresden 

Personalised recommendations