Advertisement

Analysis of Length and Orientation of Microtubules in Wide-Field Fluorescence Microscopy

  • Gerlind Herberich
  • Anca Ivanescu
  • Ivonne Gamper
  • Antonio Sechi
  • Til Aach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

In this paper we present a novel approach for the analysis of microtubules in wide-field fluorescence microscopy. Microtubules are flexible elongated structures and part of the cytoskeleton, a cytoplasmic scaffolding responsible for cell stability and motility. The method allows for precise measurements of microtubule length and orientation under different conditions despite a high variability of image data and in the presence of artefacts. Application of the proposed method to demonstrate the effect of the protein GAR22 on the rate of polymerisation of microtubules illustrates the potential of our approach.

Keywords

Segmentation Result High Dynamic Range Directional Cell Motility Microtubule Length Ridge Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Small, J.V., Stradal, T., Vignal, E., Rottner, K.: The lamellipodium: where motility begins. Trends Cell Biol. 12(3), 112–120 (2002)CrossRefGoogle Scholar
  2. 2.
    Sechi, A.S., Wehland, J.: Ena/vasp proteins: multifunctional regulators of actin cytoskeleton dynamics. Front Biosci. 9, 1294–1310 (2004)CrossRefGoogle Scholar
  3. 3.
    Goldman, R.D.: The role of three cytoplasmic fibers in bhk-21 cell motility. i. microtubules and the effects of colchicine. J. Cell Biol. 51(3), 752–762 (1971)CrossRefGoogle Scholar
  4. 4.
    Kaverina, I., Krylyshkina, O., Small, J.V.: Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146(5), 1033–1044 (1999)CrossRefGoogle Scholar
  5. 5.
    Krylyshkina, O., Kaverina, I., Kranewitter, W., Steffen, W., Alonso, M.C., Cross, R.A., Small, J.V.: Modulation of substrate adhesion dynamics via microtubule targeting requires kinesin-1. J. Cell Biol. 156(2), 349–359 (2002)CrossRefGoogle Scholar
  6. 6.
    Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A., Fuchs, E.: Acf7: an essential integrator of microtubule dynamics. Cell 115(3), 343–354 (2003)CrossRefGoogle Scholar
  7. 7.
    Goriounov, D., Leung, C.L., Liem, R.K.H.: Protein products of human gas2-related genes on chromosomes 17 and 22 (hgar17 and hgar22) associate with both microfilaments and microtubules. J. Cell Sci. 116(Pt. 6), 1045–1058 (2003)CrossRefGoogle Scholar
  8. 8.
    Kohler, M., Aufderheide, M., Ramm, D.: Method for the description of differences in the filamentous structure of the cytoskeleton in cultured cells. Toxicol Lett. 72(1-3), 33–42 (1994)CrossRefGoogle Scholar
  9. 9.
    Rodionov, V., Nadezhdina, E., Peloquin, J., Borisy, G.: Digital fluorescence microscopy of cell cytoplasts with and without the centrosome. Methods Cell Biol. 67, 43–51 (2001)CrossRefGoogle Scholar
  10. 10.
    Lichtenstein, N., Geiger, B., Kam, Z.: Quantitative analysis of cytoskeletal organization by digital fluorescent microscopy. Cytometry A 54(1), 8–18 (2003)CrossRefGoogle Scholar
  11. 11.
    Shah, S.A., Santago, P., Rubin, B.K.: Quantification of biopolymer filament structure. Ultramicroscopy 104(3-4), 244–254 (2005)CrossRefGoogle Scholar
  12. 12.
    Olabarriaga, S., Breeuwer, M., Niessen, W.: Evaluation of Hessian-based filters to enhance the axis of coronary arteries in CT images. In: Lemke, H.U., Vannier, M.W., Inamura, K., Farman, A.G., Doi, K., Reiber, J.H.C. (eds.) Computer Assisted Radiology and Surgery, London. International Congress Series, vol. 1256, pp. 1191–1196. Elsevier, Amsterdam (June 2003)Google Scholar
  13. 13.
    Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1007–1019 (2004)CrossRefGoogle Scholar
  14. 14.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 891–906 (1991)CrossRefGoogle Scholar
  15. 15.
    Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  16. 16.
    Grenklo, S., Geese, M., Lindberg, U., Wehland, J., Karlsson, R., Sechi, A.S.: A crucial role for profilin-actin in the intracellular motility of listeria monocytogenes. EMBO Rep. 4(5), 523–529 (2003)CrossRefGoogle Scholar
  17. 17.
    Pust, S., Morrison, H., Wehland, J., Sechi, A.S., Herrlich, P.: Listeria monocytogenes exploits erm protein functions to efficiently spread from cell to cell. EMBO J. 24(6), 1287–1300 (2005)CrossRefGoogle Scholar
  18. 18.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)CrossRefGoogle Scholar
  19. 19.
    Therrien, C.: Decision, Estimation and Classification: Introduction to Pattern Recognition and Related Topics. John Wiley and Sons, Chichester (1989)Google Scholar
  20. 20.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on systems, man, and cybernetics SMC-9, 62–66 (1979)Google Scholar
  21. 21.
    Mühlich, M., Aach, T.: Analysis of multiple orientations. IEEE Transactions on Image Processing 18(7), 1424–1437 (2009)CrossRefGoogle Scholar
  22. 22.
    Mühlich, M., Aach, T.: High accuracy feature detection for camera calibration: A multi-steerable approach. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 284–293. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gerlind Herberich
    • 1
  • Anca Ivanescu
    • 1
  • Ivonne Gamper
    • 2
  • Antonio Sechi
    • 2
  • Til Aach
    • 1
  1. 1.Institute of Imaging and Computer VisionRWTH Aachen UniversityGermany
  2. 2.Institute of Biomedical Engineering Dept. of Cell BiologyRWTH Aachen UniversityGermany

Personalised recommendations