Advertisement

A Contour Matching Algorithm to Reconstruct Ruptured Documents

  • Anke Stieber
  • Jan Schneider
  • Bertram Nickolay
  • Jörg Krüger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

A procedure for reassembling ruptured documents from a large number of fragments is proposed. Such problems often arises in forensic and archiving. Usually, fragments are mixed and take arbitrary shapes. The proposed procedure concentrates on contour information of the fragments and represents it as feature strings to perform a matching based on dynamic programming. Experiments with 500 images of randomly shredded fragments show that the proposed reconstruction procedure is able to compose nearly 98% of the ruptured pages.

Keywords

False Reject Rate Fragment Pair Jigsaw Puzzle Contour Segment Curve Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolfson, H., Schonberg, E., Kalvin, A., Lamdan, Y.: Solving jigsaw puzzles by computer. Ann. Oper. Res. 12(1-4), 51–64 (1988)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Goldberg, D., Malon, C., Bern, M.: A global approach to automatic solution of jigsaw puzzles. Comput. Geom. Theory Appl. 28(2-3), 165–174 (2004)MathSciNetGoogle Scholar
  3. 3.
    Pimenta, A., Justino, E., Oliveira, L.S., Sabourin, R.: Document reconstruction using dynamic programming. In: ICASSP 2009: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Washington, DC, USA, pp. 1393–1396. IEEE Computer Society, Los Alamitos (April 2009)Google Scholar
  4. 4.
    Solana, C., Justino, E., Oliveira, L.S., Bortolozzi, F.: Document reconstruction based on feature matching. In: Rodrigues, M.A.F., Frery, A.C. (eds.) Proceedings of the 18th Brazilian Symposium on Computer Graphics and Image Processing, October 9-12. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  5. 5.
    Kong, W., Kimia, B.B.: On solving 2d and 3d puzzles using curve matching. In: CVPR (2), pp. 583–590 (2001)Google Scholar
  6. 6.
    Wolfson, H.J.: On curve matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 483–489 (1990)CrossRefGoogle Scholar
  7. 7.
    De Smet, P.: Reconstruction of ripped-up documents using fragment stack analysis procedures. Forensic Science International 176(2-3), 124–136 (2008)CrossRefGoogle Scholar
  8. 8.
    McBride, J.C., Kimia, B.B.: Archaeological fragment reconstruction using curve-matching. In: Computer Vision and Pattern Recognition Workshop (CVPRW), vol. 1, p. 3 (2003)Google Scholar
  9. 9.
    Leitão, H.C.d.G., Stolfi, J.: A multiscale method for the reassembly of two-dimensional fragmented objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1239–1251 (2002)CrossRefGoogle Scholar
  10. 10.
    Leitão, H.C.d.G., Stolfi, J.: Measuring the information content of fracture lines. International Journal of Computer Vision 65(3), 163–174 (2005)CrossRefGoogle Scholar
  11. 11.
    Veltkamp, R.C., Hagedoorn, M.: Shape similarity measures, properties and constructions. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 467–476. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anke Stieber
    • 1
  • Jan Schneider
    • 1
  • Bertram Nickolay
    • 1
  • Jörg Krüger
    • 1
  1. 1.Fraunhofer IPKBerlinGermany

Personalised recommendations