Advertisement

Slicing the View: Occlusion-Aware View-Based Robot Navigation

  • David Dederscheck
  • Martin Zahn
  • Holger Friedrich
  • Rudolf Mester
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

Optical Rails [1] is a purely view-based method for autonomous track following with a mobile robot, based upon compact omnidirectional view descriptors using basis functions on the sphere.We address the most prominent points of criticism towards holistic methods for robot navigation: Dealing with occlusions and varying illumination. This is accomplished by slicing the omnidirectional view into segments, enabling dynamic visual fields capable of masking out occlusions while preserving proven, efficient paradigms for holistic view comparison and steering.

Keywords

Mobile Robot Robot Navigation Omnidirectional Camera Optimal Expansion View Descriptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dederscheck, D., Friedrich, H., Lenhart, C., Zahn, M., Mester, R.: ‘Featuring’ Optical Rails: View-based robot guidance using orientation features on the sphere. In: OMNIVIS workshop, ICCV, Kyoto, Japan. IEEE, Los Alamitos (2009)Google Scholar
  2. 2.
    Matsumoto, Y., Inaba, M., Inoue, H.: View-based navigation using an omniview sequence in a corridor environment. Machine Vision and Applications 14 (2003)Google Scholar
  3. 3.
    Möller, R., Vardy, A.: Local visual homing by matched-filter descent in image distances. Biological Cybernetics 95, 413–430 (2006) ISSN 0340-1200CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cartwright, B., Collett, T.: Landmark maps for honeybees. Biological Cybernetics 57, 85–93 (1987)CrossRefGoogle Scholar
  5. 5.
    Shah, S., Aggarwal, J.K.: Mobile robot navigation and scene modeling using stereo fish-eye lens system. Machine Vision and Applications 10, 159–173 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Dederscheck
    • 1
  • Martin Zahn
    • 1
  • Holger Friedrich
    • 1
  • Rudolf Mester
    • 1
  1. 1.Visual Sensorics and Information Processing LabJ. W. Goethe UniversityFrankfurtGermany

Personalised recommendations