Advertisement

Model-Based Recognition of Domino Tiles Using TGraphs

  • Stefan Wirtz
  • Marcel Häselich
  • Dietrich Paulus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6376)

Abstract

This paper presents a case study showing that domino tile recognition using a model-based approach delivers results comparable to heuristic or statistical approaches. The knowledge on our models is modeled in TGraphs which are typed, attributed, and ordered directed graphs. Four task-independent rules are defined to create a domain independent control strategy which manages the object recognition. To perform the matching of elements found in the image and elements given by the model, a large number of hypotheses may arise. We designed several belief functions in terms of Dempster-Shafer in order to rate hypotheses emerging from the assignment of image to model elements. The developed system achieves a recall of 89.4% and a precision of 94.4%. As a result we are able to show that model based object recognition is on a competitive basis with the benefit of knowing the belief in each model. This enables the possibility to apply our techniques to more complex domains again, as it was tried and canceled 10 years ago.

Keywords

Object Recognition Belief Function Segmentation Object Basic Probabilistic Assignment Geography Markup Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Niemann, H., et al.: ERNEST: A Semantic Network System for Pattern Understanding. 12, 883–905 (1990)Google Scholar
  2. 2.
    Quint, F.: Kartengestützte Interpretation monokularer Luftbilder. PhD thesis, Universität Fridericiana zu Karlsruhe, TH (1997)Google Scholar
  3. 3.
    Niemann, H., et al.: Ernest: A semantic network system for pattern understanding. IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 883–905 (1990)CrossRefGoogle Scholar
  4. 4.
    Ebert, J., et al.: Graph technology in reverse engineering, the tgraph approach. In: Gimnich, R., Kaiser, U., Quante, J., Winter, A. (eds.) 10th Workshop Software Reengineering (WSR 2008), Bonn. GI Lecture Notes in Informatics, vol. 126, pp. 67–81. GI (2008)Google Scholar
  5. 5.
    Bollmann, M., et al.: Playing Domino: A Case Study for an Active Vision System. In: Christensen, H.I. (ed.) ICVS 1999. LNCS, vol. 1542, pp. 392–411. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, London (2009)Google Scholar
  7. 7.
    Cremers, D., Sochen, N., Schnrr, C.: A multiphase dynamic labeling model for variational recognition-driven image segmentation. International Journal of Computer Vision 66(1), 67–81 (2006)CrossRefGoogle Scholar
  8. 8.
    Seemann, E., Leibe, B., Schiele, B.: Multi-aspect detection of articulated objects. In: Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1582–1588 (2006)Google Scholar
  9. 9.
    Niemann, H.: Pattern Analysis and Understanding. Springer Series in Information Sciences, vol. 4. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  10. 10.
    Hois, J.: Towards Combining Ontologies and Uncertain Knowledge. In: Progic 2007: The Third Workshop on Combining Probability and Logic. University of Kent, Canterbury (2007)Google Scholar
  11. 11.
    Reineking, T., Schult, N., Hois, J.: Evidential Combination of Ontological and Statistical Information for Active Scene Classification. In: KEOD (2009)Google Scholar
  12. 12.
    Beierle, C., Kern-Isberner, G.: Methoden wissensbasierter Systeme - Grundlagen, Algorithmen, Anwendungen. Vieweg, 1. Auflage (2006)Google Scholar
  13. 13.
    Hois, J., Kerstin Schill, J.A.B.: Integrating Uncertain Knowledge in a Domain Ontology for Room Concept Classifications. In: Research and Development in Intelligent Systems XXIII (2007)Google Scholar
  14. 14.
    Neumann, B.: Bayesian compositional hierarchies - a probabilistic structure for scene interpretation. Technical Report FBI-HH-B-282/08, Department of Informatics, Hamburg University (2008)Google Scholar
  15. 15.
    Kummert, F., Sagerer, G., Niemann, H.: A Problem-independent Control Algorithm for Image Understanding. Universität Bielefeld (1992)Google Scholar
  16. 16.
    Sagerer, G.: Darstellung und Nutzung von Expertenwissen fu ein Bildanalysesystem. Springer, Berlin (1985)Google Scholar
  17. 17.
    Niemann, H., et al.: Ernest: A semantic network system for pattern understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence 9, 883–905 (1990), http://www.computer.org/tpami/ CrossRefGoogle Scholar
  18. 18.
    Crevier, D., Lepage, R.: Knowledge-Based Image Understanding Systems: A Survey. Computer Vision and Image Understanding: CVIU 67, 161–185 (1997)CrossRefGoogle Scholar
  19. 19.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  20. 20.
    Falkowski, K., et al.: Semi-automatic generation of full citygml models from images. In: Geoinformatik 2009. ifgiPrints, vol. 35, pp. 101–110. Institut für Geoinformatik Westfälische Wilhelms-Universität Münster (April 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stefan Wirtz
    • 1
  • Marcel Häselich
    • 1
  • Dietrich Paulus
    • 1
  1. 1.Department for Computer ScienceUniversity of Koblenz-Landau 

Personalised recommendations