Skip to main content

Coxeter Groups and Asynchronous Cellular Automata

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6350)

Abstract

The dynamics group of an asynchronous cellular automaton (ACA) relates properties of its long term dynamics to the structure of Coxeter groups. The key mathematical feature connecting these diverse fields is involutions. Group-theoretic results in the latter domain may lead to insight about the dynamics in the former, and vice-versa. In this article, we highlight some central themes and common structures, and discuss novel approaches to some open and open-ended problems. We introduce the state automaton of an ACA, and show how the root automaton of a Coxeter group is essentially part of the state automaton of a related ACA.

Keywords

  • Conjugacy Class
  • Word Problem
  • Periodic Point
  • Coxeter Group
  • Vertex Function

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-15979-4_43
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-15979-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  2. Brink, B., Howlett, R.B.: A finiteness property and an automatic structure for Coxeter groups. Math. Ann. 296, 179–190 (1993)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Eriksson, H.: Computational and combinatorial aspects of Coxeter groups. PhD thesis, KTH Stockholm (1994)

    Google Scholar 

  4. Eriksson, H., Eriksson, K.: Conjugacy of Coxeter elements. Elect. J. Comb. 16, #R4 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Geck, M., Pfeiffer, G.: Characters of finite Coxeter groups and Iwahori-Hecke algebras. Oxford Science Press (2000)

    Google Scholar 

  6. Hansson, A.Å., Mortveit, H.S., Reidys, C.M.: On asynchronous cellular automata. Adv. Comp. Sys. 8, 521–538 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    CrossRef  MATH  Google Scholar 

  8. Macauley, M., McCammond, J., Mortveit, H.S.: Order independence in asynchronous cellular automata. J. Cell. Autom. 3, 37–56 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Macauley, M., McCammond, J., Mortveit, H.S.: Dynamics groups of asynchronous cellular automata. J. Algebraic Combin. (2010) (in press)

    Google Scholar 

  10. Macauley, M., Mortveit, H.S.: On enumeration of conjugacy classes of Coxeter elements. Proc. Amer. Math. Soc. 136, 4157–4165 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Macauley, M., Mortveit, H.S.: Posets from admissible Coxeter sequences (2010) (submitted)

    Google Scholar 

  12. Macauley, M., Mortveit, H.S.: Cycle equivalence of graph dynamical systems. Nonlinearity 22, 421–436 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Macauley, M., Mortveit, H.S.: Update sequence stability in graph dynamical systems. Discrete Cont. Dyn. Sys. Ser. S (2010) (in press)

    Google Scholar 

  14. Mortveit, H.S., Reidys, C.M.: An Introduction to Sequential Dynamical Systems. Springer, New York (2007)

    MATH  Google Scholar 

  15. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Canad. J. Math. 6, 80–91 (1954)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Macauley, M., Mortveit, H.S. (2010). Coxeter Groups and Asynchronous Cellular Automata. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds) Cellular Automata. ACRI 2010. Lecture Notes in Computer Science, vol 6350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15979-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15979-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15978-7

  • Online ISBN: 978-3-642-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)