A Framework for Assessing the Reliability of Mechatronic Systems

Conference paper

Abstract

This chapter proposes a framework for mechatronic systems reliability assessment at early stage of the design process. The approach provides to designers the product reliability indicator by using a semantic model that includes data related to its components characteristics and to their interactions. We focus on complex mechatronic systems consisting of sub-systems made of mechanical components, electronic devices and software modules. The paper presents two main problems to face for assessing complex products reliability: what decomposition strategy to use and how to estimate the components reliability. Then we estimate the product global reliability by considering separately mechanical components, electronic devices and the software. To test the approach, an application is outlined to estimate the reliability of a hard disk.

Keywords

Mechatronic system Reliability Behavioural modeling Software reliability 

References

  1. 1.
    Ohring, M., Lloyd, J.R. (2010) Reliability and Failure of Electronic Materials and Devices. Elsevier Science & Technology Books, Oxford, ISBN: 0120885743.Google Scholar
  2. 2.
    MIL-HDBK-217, the Military Handbook for “Reliability Prediction of Electronic Equipment” http://www.sqconline.com/download/
  3. 3.
    Relex Reliability and Maintainability Prediction (2006) http://www.relex.com
  4. 4.
    Item Software for Mechanical components NSWC 98 Standard (2006) http://www.itemuk.com
  5. 5.
    Roy, G.R., Weckman, R.L., Shell, J.H. (June 2001) Marvel modeling the reliability of repairable systems in the aviation industry. Computers & Industrial Engineering, 40(1–2):51–63.Google Scholar
  6. 6.
    Coulibaly, A., Mutel, B., Ait-Kadi, D. (2007) Product modelling framework for behavioural performance evaluation at design stage. Computers in Industry, 58:567–577, http://www.sciencedirect.com
  7. 7.
    OREDA (Offshore Reliability Data) (2009) http://www.sintef.no/static/tl/projects/oreda/
  8. 8.
    NPRD-95 (Non electronic Parts Reliability) (1995) http://www.itemsoft.com/nonelec.html
  9. 9.
    Tsai, C.-C., Lin, S.-C., Huang, H.-C., Cheng, Y.-M. (2009) Design and control of a brushless DC limited-angle torque motor with its application to fuel control of small-scale gas turbine engines. Mechatronics, 19:29–41.CrossRefGoogle Scholar
  10. 10.
    Lyonnet, P., Toscano, R., Maisonneuve, P.L., Lanternier, B. (2006) Modélisation de la fiabilité des macro-composants mécaniques à partir de modèles mathématiques et de réseaux de neurones, comparaisons des méthodes. Proceedings of 24th Machinery Vibration, Reliability and Maintenance, 25-27 Oct. 2006, Montréal, CMVA.Google Scholar
  11. 11.
    Cottet, F. (2001) LabVIEW: Programmation et applications. Ed. Dunod, ISBN 2-10-005667-0.Google Scholar
  12. 12.
    Zwingmann, X., AitKadi, D., Coulibaly, A., Mutel, B. (2008) Optimal disassembly sequencing strategy using constraint programming approach. Journal of Quality in Maintenance Engineering, 14(1):46–58, http://www.emeraldinsight.com/10.1108/13552510810861932 Google Scholar
  13. 13.
    Naval Surface Warfare Center (NSWC), NSWC-98/LE1 (1998) Handbook of Reliability Prediction Procedures for Mechanical Equipment. Naval Surface Warfare Center, Washington, DC.Google Scholar
  14. 14.
    Le Guen, H. (2005) Validation d’un logiciel par le test statistique d’usage: de la Modélisation à la décision de livraison. Thèse de Doctorat de l’Université de Rennes 1, soutenue le 15 juin 2005.Google Scholar
  15. 15.
    Ledoux, J. (1993) Modèles Markoviens: sur la caractérisation de l’agrégation faible et sur les modèles structurels pour l’évaluation de la sûreté de fonctionnement du logiciel. PhD thesis, Université de Rennes I, Décembre 1993.Google Scholar
  16. 16.
    Bourhfir, C., Dssouli, R., Aboulhamid, E., Rico, N. (1997) Automatic executable test case generation for extended finite state machine protocols. In IFIP WG 6.1 International Workshop on Testing of Communicating Systems, pp. 75–90, Cheju Island, Korea.Google Scholar
  17. 17.
    Military Standard – 1629A (1980) Procedures for Performing a Failure Mode, Effects and Criticality Analysis. U.S. Department of Defence, Washington, DC.Google Scholar
  18. 18.
    Military Handbook – 338B (1998) Electronic Reliability Design Handbook, US Department of Defense, Washington, DC.Google Scholar
  19. 19.
    NSWC-07 (2007) Handbook of Reliability Prediction Procedures for Mechanical Equipment. Naval Surface Warfare Center, Washington, DC.Google Scholar
  20. 20.
    Noel, M.F. (2006) A dynamic multi-view product model to share product behaviours among designers: How process model adds semantic to the behavior paradigm. International Journal of Product Lifecycle Management, 1(4):380–390.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Coulibaly, A., Houssin, R., Mutel, B. (2008) Maintainability and safety indicators at design stage for mechanical products. Computers in Industry, 59(5):438–449, http://dx.doi.org/10.1016/j.compind.2007.12.006
  22. 22.
    Rivoire, M., Ferrier, J.-L. (2001) Matlab, Simulink, Stateflow avec des exercices d’automatique résolus. Ed. Technip, Paris, ISBN 2-7108-0789-0.Google Scholar
  23. 23.
    Campbell, S.L., Chancelier, J.-P., Nikoukhah, R. (2000) Modeling and Simulation in Scilab/Scicos. Springer, Heidelberg, ISBN 10:0-387-27802-8.Google Scholar
  24. 24.
    Sumathi, S., Surekha, P. (2007) LabVIEW Based Advanced Instrumentation Systems. Ed. Springer, Heidelberg, ISBN 978-3-540-48500-1.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.National Institute for Applied Sciences of Strasbourg 24StrasbourgFrance
  2. 2.Laboratoire Mécatronique 3 MUniversité de Technologie de Belfort-MontbéliardBelfort CedexFrance

Personalised recommendations