Multiobjective Design Optimization of 3–PRR Planar Parallel Manipulators

Conference paper


This chapter addresses the dimensional synthesis of parallel kinematics machines. A multiobjective optimization problem is proposed in order to determine optimum structural and geometric parameters of parallel manipulators. The proposed approach is applied to the optimum design of a three-degree-of-freedom planar parallel manipulator in order to minimize the mass of the mechanism in motion and to maximize its regular shaped workspace.


Parallel manipulators Workspace Design Multiobjective optimization 


  1. 1.
    Hay, A.M., Snyman, J.A. (2004) Methodologies for the optimal design of parallel manipulators. International Journal for Numerical Methods in Engineering, 59(11):131–152.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Merlet, J.P. (2006) Parallel Robots. Kluwer, Norwell, MA.MATHGoogle Scholar
  3. 3.
    Lou, Y., Liu, G., Chen, N., Li, Z. (2005) Optimal design of parallel manipulators for maximum effective regular workspace. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, pp. 795–800.Google Scholar
  4. 4.
    Lou, Y., Liu, G., Li, Z. (2008) Randomized optimal design of parallel manipulators. IEEE Transactions on Automation Science and Engineering, 5(2):223–233,.CrossRefGoogle Scholar
  5. 5.
    Ottaviano, E., Ceccarelli, M. (May 2000) Workspace and optimal design of a pure translation parallel manipulator-tsai manipulator. Meccanica, 35(3):203–214.CrossRefGoogle Scholar
  6. 6.
    Ottaviano, E., Ceccarelli, M. (2001) Optimal design of capaman (cassino parallel manipulator) with prescribed workspace. 2nd Workshop on Computational Kinematics KC2001, Seoul, South Korea, pp. 35–43.Google Scholar
  7. 7.
    Hao, F., Merlet, J.-P. (2005) Multi-criteria optimal design of parallel manipulators based on interval analysis. Mechanism and Machine Theory, 40(2):157–171.MATHCrossRefGoogle Scholar
  8. 8.
    Ceccarelli, M., Carbone, G., Ottaviano, E. (2005) Multi criteria optimum design of manipulators. In Bulletin of the Polish Academy of Technical Sciences, 53(1):9–18.Google Scholar
  9. 9.
    Gosselin, C.M., Angeles, J. (1988) The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator. ASME Journal of Mechanisms, Transmission and Automation in Design, 110:35–41.CrossRefGoogle Scholar
  10. 10.
    Gosselin, C.M., Angeles, J. (1989) The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator. Journal of Mechanisms, Transmissions and Automation in Design, 111(2):202–207.CrossRefGoogle Scholar
  11. 11.
    Pham, H.H., Chen, I.-M. (2003) Optimal synthesis for workspace and manipulability of parallel flexure mechanism. Proceeding of the 11th World Congress in Mechanism and Machine Science, Tianjin, China, April 1–4 2003, pp 2069–2073.Google Scholar
  12. 12.
    Stamper, R.E., Tsai, L.-W., Walsh, G.C. (1997) Optimization of a three-dof translational platform for well-conditioned workspace. Proceedings of the IEEE International Conference on Robotics and Automation, New Mexico, pp. 3250–3255.Google Scholar
  13. 13.
    Stock, M., Miller, K. (2003) Optimal kinematic design of spatial parallel manipulators: Application of linear delta robot. Transactions of the ASME, Journal of Mechanical Design, 125(2):292–301.CrossRefGoogle Scholar
  14. 14.
    Menon, C., Vertechy, R., Markot, M.C., Parenti-Castelli, V. (February 2009) Geometrical optimization of parallel mechanisms based on natural frequency evaluation: application to a spherical mechanism for future space applications. IEEE Transactions on Robotics, 25(1):12–24.CrossRefGoogle Scholar
  15. 15.
    Li, H., Yang, Z., Huang, T. (2009) Dynamics and elasto-dynamics optimization of a 2-dof planar parallel pick and place robot with flexible links. Journal of Structural and Multidisciplinary Optimization, 38(2):195–204.CrossRefGoogle Scholar
  16. 16.
    Krefft, M., Hesselbach, J. (2005) Elastodynamic optimization of parallel kinematics. Proceedings of the IEEE International Conference on Automation Science and Engineering, Edmonton, AB, Canada, Aug 1–2 2005.Google Scholar
  17. 17.
    Chablat, D., Wenger, P. (2003) Architecture optimization of a 3-dof parallel mechanism for machining applications, the orthoglide. IEEE Transactions On Robotics and Automation, 19(3):403–410.CrossRefGoogle Scholar
  18. 18.
    Chablat, D., Wenger, Ph., Caro, S., Angeles, J. (2002) The isoconditioning loci of planar 3-dof parallel manipulator. Proceedings of DETC’2002, ASME Design Engineering Technical Conference, Montreal, QC, Canada, 29 Sep–2 Oct 2002.Google Scholar
  19. 19.
    Chablat, D., Wenger, P. (May 1998) Working modes and aspects in fully parallel manipulators. Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1964–1969.Google Scholar
  20. 20.
    Gosselin, C.M., Merlet, J.P. (1994) The direct kinematics of planar parallel manipulators: special architectures and number of solutions. Mechanism and Machine Theory, 29(8):1088–1097.CrossRefGoogle Scholar
  21. 21.
    Pashkevich, A., Chablat, D., Wenger, P. (2009) Stiffness analysis of overconstrained parallel manipulators. Mechanism and Machine Theory, 44(5):966–982.MATHCrossRefGoogle Scholar
  22. 22.
    Pashkevich, A., Chablat, D., Wenger, P. (2009) Design optimization of parallel manipulators for high-speed precision machining application. 13th IFAC Symposium on Information Control Problems in Manufacturing, Moscow, Russia, 3–5 June 2009.Google Scholar
  23. 23.
    Liu, X.J., Wang, J., Oh, K.K., Kim, J. (February 2004) A new approach to the design of a delta robot with a desired workspace. Journal of Intelligent and Robotic Systems, 39(2):209–225.CrossRefGoogle Scholar
  24. 24.
    Wenger, P., Chablat, D. (2000) Kinematic analysis of a new parallel machine tool: The orthoglide. Proceedings of the 7th International Symposium on Advances in Robot Kinematics, Portoroz, Slovenia.Google Scholar
  25. 25.
    Li, Z. (1990) Geometrical consideration of robot kinematics singularities. The International Journal of Robotics and Automation, 5(3):139–145.Google Scholar
  26. 26.
    Paden, B., Sastry, S. (1988) Optimal kinematic design of 6r manipulator. The International Journal of Robotics Research, 7(2):43–61.CrossRefGoogle Scholar
  27. 27.
    Ranjbaran, F., Angeles, J., Gonzalez Palacios, M.A., Patel, R. (1995) The mechanical design of a seven-axes manipulator with kinematic isotropy. ASME Journal of Intelligent and Robotic Systems, 14(1):21–41.MATHCrossRefGoogle Scholar
  28. 28.
    ESTECO (2008) Modefrontier, version 4.0.3.Google Scholar
  29. 29.
    Altuzarra, O., Salgado, O., Hernandez, A., Angeles, J. (2009) Multiobjective optimum design of a symmetric parallel schnflies-motion generator. ASME Journal of Mechanical Design, 131(3):031002-1–031002-11.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Ecole Centrale de Nantes, IRCCyN UMR CNRS 6597Nantes Cedex 3France
  2. 2.Institut de Recherches en Communications et Cybernetique de NantesNantesFrance

Personalised recommendations